# 洪水時の地形の浸食堆積履歴が河川生息場の 好適性に及ぼす影響

# INFLUENCE OF SPATIOTEMPORAL PATTERNS OF EROSION AND DEPOSITION PROCESSES DURING FLOODS ON RIVERINE HABITAT SUITABILITY

# 兵藤誠<sup>1</sup>・竹門康弘<sup>2</sup>・角哲也<sup>3</sup>・粟津陽介<sup>4</sup>・鄧朝暉<sup>5</sup> Makoto HYODO, Yasuhiro TAKEMON, Tetsuya SUMI, Yosuke AWAZU and Zhaohui DENG

1正会員 京都大学 防災研究所水資源環境研究センター(〒611-0011 京都府宇治市五ヶ庄)
 2正会員 理博 京都大学准教授 防災研究所水資源環境研究センター(〒611-0011 京都府宇治市五ヶ庄)
 3正会員 博士(工) 京都大学教授 防災研究所水資源環境研究センター(〒611-0011 京都府宇治市五ヶ庄)
 4学生会員 京都大学 防災研究所水資源環境研究センター(〒611-0011 京都府宇治市五ヶ庄)
 <sup>5</sup>非会員 農博 いであ株式会社 情報システム事業本部(〒154-8585 東京都世田谷区駒沢3-15-1)

This article shows how spatiotemporal patterns of geomorphological processes influence riverine habitat suitability. We conducted a case study in a middle reach of the Tenryu River in Japan and a set of interval-recording-cameras has been installed at 60m above the riverbed on the electric supply tower located in the middle of a river corridor. Firstly, we identified different types of habitat structures in a reach, such as riffles, side pools, and back waters, and analyzed characteristics of inundation processes for each habitat type. Secondly, we analyzed, at a micro scale, hardening and softening processes of habitat structures by small floods in relation to lotic and lentic inundation characteristics. Thirdly, in order to analyze erosion and deposition processes at a macro scale, we developed a 2-D model using the photogrammetric method and analyzed temporal series of the aerial photo data and 2-D-transformed data by quantifying deposited and eroded areas due to different types of floods.

# *Key Words* : spatiotemporal patterns, habitat suitability, shifting habitat mosaic, riverbed softness, geomorphological process

## 1. はじめに

河川生息場は、瀬・淵、ワンド、たまり等、様々な構造(要素)の組合せにより構成されており<sup>1)</sup>、地形の浸食や堆積の履歴と深く関連している.このような地形変化の履歴は、上流からの洪水流の規模や頻度、供給土砂(量と質)によって規定され<sup>2)、3)</sup>、河川生息場の多様性(不均質性)を決定する.具体的には、河川生息場構造(の要素)が経年的に創出や消失を繰り返し、変動履歴(時間的・空間的パターン)の結果として形成されるものである<sup>4)</sup>.生息場構造には、栄養塩や植生繁茂等も含まれるが、洪水や土砂移動の特性と関連して形成されるものである.健全な河川生態系を復元し、適切な河川管理を行うためには、変動履歴を適切に評価する必要がある.しかしながら、現在普及している様々な手法(例え

ば、HEP、AUSRIVAS、PHABSIM、RIVPACS、IBI)や自然 再生に関する取り組みでは、この観点が適切に取り入れ られていない<sup>4</sup>.近年の研究により、変動履歴の中にお いて多様な生息場が存在することが、生物多様性を最適 化する可能性が示唆されている<sup>5),6)</sup>.生息場の変動履歴 に関しては、例えばタリアメント川(北イタリア)にお ける Shifting Habitat Steady State<sup>7)</sup>や生息場寿命 (Habitat Age)<sup>8</sup>に関する研究がある.しかしながら、

地形変化による生息場が、モザイク状にシフトする (Shifting Habitat Mosaic)中で、それぞれの生息場 構造の時間的な変化の特性を経時的に追跡し、定量的に 明らかにした研究は殆どない、更に、洪水規模と生息場 構造の変動履歴の関連性について、洪水時の浸水特性や 河床軟度の変化に着目して、定量的に分析した研究はな い、本研究では、洪水による地形変化が比較的生じやす く礫床河川である天竜川(16.4k周辺)を対象として、



図-1 研究対象箇所位置図

洪水時の浸水特性と河床軟度に着目し、洪水による地形 の浸食・堆積履歴が河川生息場の好適性に及ぼす影響を 把握した. なお、対象箇所の河道特性は、セグメント2-1、河床勾配は1/520~1/650程度、代表粒径(60%)は60~ 73mm、複列~交互砂州の河床形態を有している.

## 2. 調査・分析方法

研究対象箇所である天竜川16.4k周辺は、本川最下流 に位置するダム(船明ダム: 30k地点の水力発電ダム) より十数キロ下流に位置し、近傍の水位流量観測所には 鹿島(25k)がある(図-1). この16.4kの河道中央には 中部電力の送電鉄塔があり、砂州上から約60mの高さに インターバル撮影機能付きデジタルカメラを複数台設置 し、上流側、及び下流側の河床地形を1時間毎に連続撮 影している. 2012年5月17日に撮影テストを行った後, 2012年8月8日にカメラを設置し連続撮影を開始した.カ メラからの撮影範囲は図-1に示す通りであり、撮影画像 及び、連続撮影の開始直後の生息場分布の状況を図-2に 示す. 航空写真とカメラ撮影の時点が異なるため河床地 形が異なっているが、連続撮影の開始時点では、瀬(上 流2箇所, 下流1箇所) やたまり(上流4箇所, 下流2箇 所),ワンド(上流3箇所,下流4箇所)が分布しており、 多様な生息場環境が形成されていることが分かる.なお, たまりとワンドの定義については、平水時に本川、又は 二次流路から、表層水が分断されている池をたまり、接 続されている池をワンドとした. 但し, 平水時に表層水 が連続していても、池の流水方向が本川、及び二次流路 の流水の影響を受けていない(背水ではなく分断されて







いる)と現地で判断できる池についてはたまりと定義した(具体的には、図-2の上-たまり-2と上-たまり-3).

本研究では、撮影画像に含まれるこれらの生息場構造 について、以下の①~③を行うことで洪水による地形の 変動履歴が河川生息場の好適性に及ぼす影響を把握した. それぞれの調査・分析手法を以下に示す.

- インターバル撮影機能付きカメラの撮影画像による洪水流れの特性の把握
- ② マイクロ生息場の河床の硬化・軟化履歴の定量把握
- ③ マクロ生息場における浸食・堆積履歴の定量把握

## (1) 洪水時流れの特性の把握の方法

洪水時流れの特性については、2012年10月23日の小規 模洪水時(約508m<sup>3</sup>/s, 鹿島)の時間毎の連続撮影画像 を並べて,河川水位の上昇に伴う浸水の状況と洪水流の 流向を画像から判断し,その特性を定性的に分析した. 近年の時刻流量(鹿島)を図-3に示す.なお,本論文に 示す流量は全て鹿島地点の値であり,2012年度までは時 刻流量月表の値,また、2013年度については確定値がな いため水文水質データベースによる時刻水位を2012年度 のH-Q式から換算したものを用いた.平均年最大流量が 4,500m<sup>3</sup>/s (1939年~2012年の平均値)であるため,観測 期間(2012年8月8日以降)に発生した洪水は小規模にと どまっている.10月23日の小規模洪水を対象とした理由 は、対象期間に大規模洪水が発生しなかったこと、後述 (2)で行うマイクロ生息場との関連性を把握する必要



図-3 調査概要と洪水履歴(鹿島地点)

があり、その調査時期が2012年10月~12月であったこと、 洪水時にカメラ画像が問題なく記録されていることを条 件としたためである(10月1日の洪水では暴風によりカ メラの角度が変化し記録できなかった).他の期間の小 規模洪水については、観測期間中の河床地形の変化が小 さく洪水時流れの特性は概ね同じであったので、本論文 では2012年10月23日を、現在の河床地形における小規模 洪水時の特性として論じるものとする.

## (2) マイクロ生息場の硬化・軟化履歴の定量把握の方法

生息場の河床の硬化,及び軟化プロセスを把握するために,河床軟度を2012年9月,10月,11月の3回に渡り計測した.具体的な調査方法は,生息場毎に,大きさに応じて流下方向に3~12の測線,流下方向に垂直(横断方向)に3~16の測線を引いてマトリックスを作成し,その格子点の河床軟度を計測した.計測方法は、シノという長さ30cm程度の先のとがった鉄棒に目盛を刻んだものを用いて,河床に人力で一定の荷重をかけて突き刺し,その貫入深(cm)を記録したものである.1地点につき5回行いその平均値を採用した.河床が軟らかい程,河床軟度の値は大きくなる.土壌の固さを計測する手法として,長谷川式土壌貫入計によるものがあるが,本研究では多数の地点を継続的に調査する必要があり,より簡易な方法としてシノを用いて調査・分析を行った.

#### (3) マクロ生息場の浸食・堆積履歴の定量把握の方法

河床地形の浸食・堆積過程を定量的に把握するため, まず,画像解析技術を応用して撮影画像のオルソ化(平 面直角座標系の平面二次元画像へ変換)を行う手法を開 発した.次に,これらのオルソ化した画像を重ね合せる ことにより浸食,及び堆積箇所を把握できるため,様々 な洪水の規模に着目して浸食・堆積の履歴を面的に把握 した.更に,この変化を面積として定量化し,洪水規模 と浸食・堆積履歴との関連性を分析した.

画像解析技術の基本的な理論は、測定対象面(河床地形)に設定された平面座標系 XY と、写された写真面に



図-4 河床地形の浸食・堆積過程の定量化手法

設定された平面座標系xyとの間に,式(1)が成立する.

$$X = \frac{b_1 x + b_2 y + b_3}{b_7 x + b_8 y + 1}, \quad Y = \frac{b_4 x + b_5 y + b_6}{b_7 x + b_8 y + 1}$$
(1)

式(1)は、測定対象面が水平面でなくても(鉛直面や 斜面でも)、平面形状であれば成立する.

$$x_i b_1 + y_i b_2 + b_3 - x_i X_i b_7 - y_i X_i b_8 = X_i$$
<sup>(2)</sup>

$$x_i b_4 + y_i b_5 + b_6 - x_i Y_i b_7 - y_i Y_i b_8 = Y_i$$
(3)

式 (2) と式 (3) の8つの未知係数 $b_1 \sim b_8$ は、4点以上の 標定点の測定値の組 ( $X_i$ ,  $Y_i$ ,  $x_i$ ,  $y_i$ ) (i=1, 2..., n:  $n \geq 4$ ) に対して、式 (1) を展開して線形方程式に変換す ることで、最小二乗法により求めることができる.

具体的には、カメラの画角の中に任意の8地点に杭 (標的)を設置し、RTK-GPSを用いて座標を計測した. 本論文では、この中の4つの座標を基準点として2次元モ デルを構築(オルソ化)した.本モデルと航空写真を重 ね合わせた定量化のイメージを図-4に示す.その結果、



図-5 小規模洪水の連続撮影画像と洪水時流れの特性(2012年10月22日~11月3日)

水平方向に1 m 程度の解析精度のモデルを構築すること ができた.研究対象箇所の川幅が約800 m 程度あること から,浸食・堆積履歴を定量化する上で適切な精度を有 していると考えられる.但し,厳密には解析範囲の端部 では補正が外挿補間となりやや精度が落ちる等の課題は あるが,相対的な変化量は十分に定量化できているため, 本論文では解析精度の向上については今後の課題とする.

カメラ撮影画像を用いて定量化を行う期間は、観測開 始時の2012年8月8日~2013年5月17日までを対象とした (図-3).しかし、本期間には小規模洪水しか発生しな

(国-3). しかし、本新前にはが焼く魚水じか完全しな かったため、中規模・大規模洪水による浸食・堆積過程 を把握する必要があった. そこで、2010年8月17日と 2011年12月10日の航空写真(オルソ画像:浜松河川国道 事務所提供)、2012年5月17日のカメラテスト時の撮影 画像を加えて定量化、及び分析を行うことで、2011年9 月21日の大規模洪水(7,521m<sup>3</sup>/s)、及び2012年6月20日 の中規模洪水(3,737 m<sup>3</sup>/s)による地形の変化を把握し た. これにより、全体として2010年8月17日~2013年5月 17日までの期間を対象として、規模の異なる洪水による 浸食・堆積履歴の分析を行った.

#### 3. 結果と考察

#### (1) 洪水時流れの特性の把握

上流側(図-5の上段3枚の写真)の上-ワンド-1及び上たまり-2に着目すると、水位の上昇に伴い旧二次流路を 先行して洪水流が通過し、小規模洪水時に形成される流路となっている(小規模洪水時の流水環境).上-たまり-1では、上-瀬-2の周辺の水位の上昇に伴い、背水により冠水する特性であることがわかる(小規模洪水時の止水環境).下流側(図-5の下段3枚の写真)の下-たまり-1をみると、カメラの撮影範囲から外れているが、水位



上昇に伴い、本たまりの上流側から洪水流が越流して流路となっている(小規模洪水時の流水環境).下-たまり-2と下-ワンド-21では水位上昇に伴い、それぞれ二次流路(上-瀬-2)及び、本川の背水によって冠水した(小規模洪水時の止水環境).更に、洪水ピーク時には、二次流路と本川の背水が混合するような複雑な形態となっていた.以上より、小規模洪水時の流れの特性として、大きくは流水環境、及び止水環境の2つの浸水形態が存在することが分かった.

#### (2) マイクロ生息場の河床の硬化・軟化履歴の定量把握

図-6に、2012年9月、10月、11月に行った河床軟度調 査結果を示す.ここでは、マイクロ構造から見た生息場 の変動履歴を把握し、(1)で分析した洪水時流れの特性 (流水環境,及び止水環境)との関連性を分析した.た まりとワンドについては調査箇所全体の河床軟度の平均 値,瀬については瀬の中を上流部、中流部、下流部の3



図-7 河床地形の浸食・堆積履歴の面的把握(大規模,中規模,及び小規模洪水による変化の抜粋)

つの区域に分けてそれぞれ平均値を算出した. 図に示す ように、各生息場の河床軟度は、流水環境と止水環境に よって小規模洪水時の応答が明らかに異なることが分 かった. 図-6の上段と中段に示す瀬は、流水環境として 捉えることができる.止水環境の生息場は、洪水の末期 等に細粒土砂が堆積しやすく河床が軟化している.一方 で,同じたまりやワンドでも,流水環境の生息場では, 止水環境と比較して河床軟度が小さく、小規模洪水では 生息場の河床を浸食するような表層の土砂移動により河 床が硬化している. 流水環境の中で瀬に着目すると, 10 月1日 (803m<sup>3</sup>/s),及び10月23日 (508m<sup>3</sup>/s)の小規模洪 水を受けることで、河床が瀬頭で硬化、瀬尻では軟化、 又は軟度の高い状態を維持する傾向がみられた. これは 小規模洪水により瀬頭の河床が浸食し、瀬尻に堆積する ような規模の小さい土砂移動により生じたものと考えら れる.

## (3) マクロ生息場における浸食・堆積履歴の定量把握 a) 浸食・堆積履歴の面的把握

カメラ撮影画像の範囲の内,流下方向に700m(16.6k~ 17.3k),横断方向に約500mの範囲について,複数時点 の航空写真と2次元モデルの重ね合わせを行い、時点間 の浸食、及び堆積の変動履歴を面的に示した結果を図-7 に示す. なお, 解析に用いた撮影画像は, 洪水の影響が なく水位が十分に低い平水時の時点のものを抽出したも のであり、浸食、及び堆積とは平水時の水面に対する面 的な変化を示したものである. 2010年8月~2011年12月 では、期間内に最大7,521m<sup>3</sup>/sの大規模洪水が発生し、規 模の大きい堆積や浸食が生じた. 右岸の上下流の流路の 土砂堆積によって上-瀬-1が創出され,左岸側の二次流路 の土砂堆積と周辺の浸食によって新たな二次流路が創出 された. 2012年5月~2012年9月では、期間内に平均年最 大流量 (4,500m<sup>3</sup>/s) をやや下回る3,737m<sup>3</sup>/sの中規模洪水 が発生し、比較的規模の大きな土砂移動が生じた. 上-瀬-1では瀬頭に新たな土砂堆積が生じて瀬が更新さ



れた.また、二次流路の土砂堆積、左岸側の河岸浸食、 それに伴う下流の土砂堆積が生じることで、上-瀬-2が創 出された.2012年10月~2012年12月では、期間内に最大 508m<sup>3</sup>/sの小規模洪水が発生し、流水環境である上-たま り-2、及び上-ワンド-1が統合するような小規模の地形変 化(浸食による生息場の消失)が生じた.上記の結果よ り、生息場の新たな創出や消失、既存生息場の更新、微 地形変化等が発生し、それが洪水規模に応じて特徴付け られることが分かった.

#### b)洪水規模と浸食・堆積特性との関連性分析

洪水規模と浸食・堆積履歴の関連性について分析する ため、上記 a)の結果を用いて、2時点間に生じた洪水 規模と、浸食、堆積、変化無し、及び水面(流水部)の 面積との関係を把握した(図-8).解析対象範囲の全面 積(27.2万m<sup>2</sup>)を基準とすると、中規模・大規模洪水時 に浸食、又は堆積する河床地形の動的な面積割合は19.5 ~32.7%(5.3~8.9万m<sup>2</sup>)である一方で、小規模洪水時では1.5~2.5%(0.4~0.7万m<sup>2</sup>)であり河床地形に動的変化が生じる規模は非常に小さい、次に、浸食と堆積の割合に着目すると、平均年最大流量程度の中規模洪水、又はそれ以上の大規模洪水が発生すると、地形変化は浸食に対して堆積が卓越する結果となり、土砂堆積によって瀬が新たに創出され、更新される履歴をよく示す結果となった.一方で、小規模洪水が発生すると、堆積よりも浸食が卓越、又は浸食と堆積が同程度の結果となった. 但し、2011年12月~2012年5月の期間内に生じた731m<sup>3</sup>/sの小規模洪水による変化では、堆積が卓越した結果となった.この結果を洪水時のハイドロ特性(図-3)と合せて詳細にみると、本洪水の継続時間が長いため、小規模洪水の傾向と異なり堆積を卓越させた可能性がある.

浸食・堆積の特性について、河床形態や砂州の位置の 観点から考察する.本対象箇所は、交互砂州(半波長1 km程度)と複列砂州(400 m程度)が混在している.中 規模・大規模洪水で堆積が卓越し、瀬が創出、又は更新 した理由については、瀬が複列砂州の下流側に位置して おり、一定規模の洪水(ここでは中規模以上の洪水)が 発生すると、砂州が下流側へ伝播しやすい状況にあるこ とが考えられる.瀬が砂州の下流側に形成されることは、 既往研究の結果<sup>9</sup>と一致した.一方で、小規模洪水時に は、砂州前縁の土砂が殆ど動かず、澪筋である瀬に土砂 が供給されない一方、瀬の中のみの土砂移動は生じるた めに浸食が卓越したものと考えられる.

生息場の好適性としてアユの産卵床に着目した場合, 瀬の重要性は広く認知されているが,その中でも瀬頭で 軟らかい場所が適していることが示されている<sup>9,10</sup>.こ れまでの研究により,小規模洪水では瀬頭の浸食が卓越 し河床が硬化することで,産卵場としての好適性が劣化 することが指摘されていたが,本研究により,瀬が硬化 (劣化)する過程を定量的に示すとともに,中規模以上 の洪水によって土砂堆積を誘発し,瀬が創出,及び更新 されることを明らかにした.また,たまりやワンドにつ いては,中期模以上の洪水で生息場が創出されること, 小規模洪水時の浸水形態がマイクロ生息場を特徴付けて いることが分かった.以上より,生息場の好適性を高め るためには,中規模以上の洪水が一定の頻度で発生する こと,及び浸水形態の異なる生息場が多く存在すること が重要であることが明らかとなった.

#### 4. 結論

インターバル撮影機能付デジタルカメラにより,洪水 時の流れの特性を把握することで,小規模洪水時の流水, 及び止水環境が,マイクロ生息場(河床軟度)の特性と 関連し,河床軟度は流水環境で高く,止水環境で低いこ とが分かった.瀬に着目すると,瀬頭の河床が浸食し, 瀬尻に堆積するような土砂移動が生じることが分かった.

解析写真測量技術を応用して、撮影画像を平面直角座 標系に変換する2次元モデルを構築することで、浸食・堆 積の変動履歴を定量的に評価できる新たな手法を示した. その結果、中規模以上の洪水が土砂堆積を誘発し、生息 場を創出、又は更新させることが分かった.一方で、小 規模洪水では浸食が卓越し、瀬頭が硬化するため、アユ の産卵場の好適性が減少することが分かった.多様な生 物に対する生息場の好適性を高めるためには、中規模以 上の洪水が一定の頻度で発生すること、浸水形態の異な る生息場が多く存在することが重要であることを示した.

謝辞:本研究にあたり国土交通省浜松河川国道事務所 からデータを提供して頂きました.調査の実施にあたり, 中部電力掛川電力所,天竜川天然資源再生連絡会,並 びに天竜川漁業協同組合,シーテック浜松支店に多大 な協力を頂きました.ここに感謝の意を表します.

#### 参考文献

- 竹門康弘:土と基礎の生態学-6.砂州の生息場機能,社団 法人地盤工学会,土と基礎 55(2),pp.37-45,2007.
- Sumi, T. and Kantoush, S.A.: Integrated management of reservoir sediment routing by flushing, replenishing and bypassing sediments in Japanese river basins, 8th International Symposium on Ecohydraulics, 2010.
- Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., Sparks, R.E. and Stromberg, J.C.: The natural flow regime, BioScience 47, No.11, pp. 769-784, 1997.
- Hyodo, M., Takemon, Y. and Sumi, T.: Need for analyzing spatiotemporal patterns of river-corridor habitat structure in sediment management, Advances in River Sediment Research – Fukuoka et al. (eds), pp.1557-1567, 2013.
- Takemon, Y.: Management of biodiversity in aquatic ecosystems: dynamic aspects of habitat complexity in stream ecosystems. In: (ed. by Abe T., Levin S., & Higashi M.) Biodiversity: An Ecological Perspective. Springer, 259–275, 1997.
- Ward, J.V., Tockner, K, Arscott, D.B. and Claret, C.: Riverine landscape diversity, Freshwater Biology 47, pp.517-539, 2002.
- Arscott, D.B., Tockner, K., Nat, D. and Ward, J.V.: Aquatic Habitat dynamics along a Braided Alpine River Ecosystem (Tagliament River, Northeast Italy), Ecosystems 5, pp.802-814, 2002.
- Tockner, K., Lorang, M.S. and Stanford, J.A.: River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts, River research and applications 26, pp.76-86, 2010.
- 9) 角哲也,中島佳奈,竹門康弘,鈴木崇正:アユの産卵に適し た河床形態に関する研究,京都大学防災研究所年報,54B, 719-725,2011.
- 村井彰弘,竹門康弘,角哲也:アユの産卵床に必要な河床 地形条件に関する研究,応用生態工学会講演集,pp.158,2012.
   (2013.9.30受付)