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Abstract Free surface flows in several shallow rectangular basins have been analyzed
experimentally, numerically and theoretically. Different geometries, characterized by differ-
ent widths and lengths, are considered as well as different hydraulic conditions. First, the
results of a series of experimental tests are briefly depicted. They reveal that, under clearly
identified hydraulic and geometrical conditions, the flow pattern is found to become non-
symmetric, in spite of the symmetrical inflow conditions, outflow conditions and geometry of
the basin. This non-symmetric motion results from the growth of small disturbances actually
present in the experimental initial and boundary conditions. Second, numerical simulations
are conducted based on a depth-averaged approach and a finite volume scheme. The simula-
tion results reproduce the global pattern of the flow observed experimentally and succeed in
predicting the stability or instability of a symmetric flow pattern for all tested configurations.
Finally, an analytical study provides mathematical insights into the conditions under which
the symmetric flow pattern becomes unstable and clarifies the governing physical processes.

Keywords Depth-averaged model · Finite volume · Reservoir hydrodynamics ·
Shallow flow · Stability analysis

1 Introduction

Flows in wide and shallow open channels may become unstable, leading to large-scale trans-
verse motion and eddies, as a result of the growth of transverse disturbances, due to the
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high sensitivity of the flow to initial and boundary conditions. There is a keen interest in
understanding such flows because of their prominence in nature and their practical impor-
tance in many open channel applications, such as jets and wakes [1], flows in compound
channels [2,3], in sudden enlargements [4], in sewage manholes or chambers [5,6], as well
as in shallow reservoirs [7–9]. Moreover, these large-scale motions influence processes such
as sediment and pollutant transport and thus are likely to affect water quality.

After summarizing the results of experimental work carried out at the Laboratory of
Hydraulic Constructions (LCH) of the Ecole Polytechnique Fédérale de Lausanne (EPFL),
the present paper covers the numerical modelling and the theoretical analysis of the flow in
a rectangular shallow basin with varying width (0.5–4 m) and varying length (3–6 m). The
detailed analysis of those rectangular basins serves as a reference case in the framework of
a research project dealing with the sedimentation of shallow reservoirs. In this context, the
present study contributes to a better understanding of the influence of the geometry of the
reservoir on the flow field and consequently on sediment deposition.

Kantoush (2007) provides a comprehensive review of experimental observations of shal-
low flows with transverse motion [7], with a focus on flows through symmetric channel
expansions. All these observations confirm that even if experimental setups are geometrically
and hydraulically symmetric, asymmetric flow patterns can develop under certain geometric
and hydraulic conditions, as shown for instance by Stovin [5,6]. Kolyshkin and Ghidaoui
(2003) summarize similar findings for wake flows [10], including notably the detailed analy-
sis of shallow flows behind various obstacles carried out by Chen and Jirka [11] Mizushima
and Shiotani (1996, 2001) [12,13] have studied experimentally and numerically flows in
symmetric channels with a suddenly expanded and contracted part for Reynolds numbers
lower than 1,500 (in the approaching channel). The present study investigates flows with
Reynolds numbers one to two orders of magnitude higher. Consistently with the aforemen-
tioned authors, the Reynolds number is defined here as Re = ub/(2ν) (u and b represent,
respectively, the velocity in the inlet channel and the width of the inlet channel, while ν is
the kinematic viscosity).

Among other numerical studies of flows in open channels with discontinuous expansion
and contraction, Mizushima and Shiotani (1996, 2001) [12,13] have used three different
methods: time-marching centred finite differences, Successive Over Relaxation (SOR) itera-
tive method and finite elements. A finite volume procedure was used by Battaglia et al. (1997)
[14] for channels with sudden expansion only. Commercial CFD codes were employed by
several authors, such as Adamsson et al. (2003) [5], for the study of sedimentation in storage
tanks, or Kantoush et al. (2005) [15] for the analysis of shallow reservoirs. In the present
work, an upwind finite volume scheme, developed at the University of Liege [16,17], is used
in combination with a depth-average k-ε turbulence model [17]. The numerical results are
discussed notably in terms of an original quantifier of asymmetry introduced by the authors.

Shapira et al. (1990) [4] applied a linear stability analysis to the flow in a gradual expan-
sion symmetric about its centreline (50 < Re < 300). They showed the existence of steady
non-symmetrical solutions. A finite element algorithm was used to solve for the evolution of
disturbances. Chu et al. (1991) [3] used a linear analysis to verify the stability of idealized
transverse velocity profiles in compound open channels, based on the rigid-lid approxima-
tion and a Runge–Kutta routine combined with a shooting procedure. Beyond discussing the
effect of bed friction, they confirmed the important role of the inflection point in the velocity
profile [18,19]. Later on, Chen and Jirka (1997) [1] analyzed plane wakes under the rigid-lid
approximation. They derived a modified Orr–Sommerfeld equation for open channel flow
with friction. They also distinguish absolute and convective instabilities by allowing the wave
number to be complex. Ghidaoui and Kolyshkin (1999) [2] showed that when the Reynolds

123



Environ Fluid Mech (2008) 8:31–54 33

number is larger than 1,000 its influence on the flow stability becomes very weak. They
also revealed that the rigid-lid assumption is valid for low Froude numbers (Fr = u/

√
gh,

with u the flow velocity, g the gravity acceleration and h the water depth), as in the present
study (Fr < 0.1). This assessment of the accuracy of the rigid-lid approximation has been
confirmed by Kolyshkin and Ghidaoui (2003) [10]. Finally, Mizushima and Shiotani (1996,
2001) [12,13] applied linear stability analysis to flows in channels with sudden expansion
and contraction for moderate Reynolds number (Re ∼ 103 or lower). In particular, they
investigated the effect of the aspect ratio of the basin (see Sect. 2) on the stability of the flow.
In the present paper, a linear stability analysis is applied.

In the following sections, the experimental, numerical and theoretical parts of the pres-
ent research are successively detailed. Next section briefly describes the findings of the
experimental tests. The depth-averaged numerical model, as will be exploited for all simu-
lations, is depicted in Sect. 3, while Sect. 4 highlights the ability of the model to represent
the non-symmetric motion in the basin. In Sects. 5 and 6, numerical results are compared
with experimental measurements for eight different geometries and four different hydraulic
conditions, showing a satisfactory agreement between predicted and observed global flow
patterns. Finally, a linear sensitivity analysis is carried out in Sect. 7, while Sect. 8 summarizes
the results and includes some concluding remarks.

2 Physical modelling

The experimental tests have been conducted in a rectangular shallow basin with inner max-
imum dimensions of 6 m in length and 4 m in width, as sketched in Fig. 1. The inlet and
outlet rectangular channels are both 0.25 m wide and 1.0 m long. The bottom of the basin is
flat and consists in hydraulically smooth PVC plates. The walls, also in PVC, can be moved
to modify the geometry of the basin. The main measurement techniques employed include
ultrasonic probes for measuring water levels, an Ultrasonic Velocity Profiler device (UVP)
for measuring 3D velocity components as well as a Large Scale Particle Image Velocimetry
technique (LSPIV) for measuring surface velocity fields. A more detailed description of the
experimental setup and measurement equipment is given in Kantoush et al. (2005, 2006)
[8,15].

The flow has been observed and analysed for eight different basin geometries. These
geometries differ by the value of the basin width B and length L , as summarized in Table 1.
In all cases, the discharge is kept constant at Q = 7.0 l/s and the water level is controlled by a
flap gate located in the downstream part of the outlet channel. Except for the tests described
in Sect. 6, the downstream water level is kept constant at h0 = 0.2 m. Therefore, in all tested
configurations, the Reynolds and Froude numbers evaluated in the inlet channel are constant:
Re = 1.75 × 104; Fr = 0.10, except in Sect. 6, where the Froude and Reynolds number are
given explicitly (Table 3).

Two non-dimensional geometrical parameters are defined for the further analysis (see
Sect. 5): the lateral expansion ratio (ER), characterizing the sudden enlargement at the tran-
sition between the inlet channel and the basin: E R = B/b and the aspect ratio (AR), charac-
terizing the geometry of the basin: AR = L/B. The first parameter holds for describing the
influence of a varying width of the basin, while the second one is suitable for describing
the effect of variations in the length of the basin. It must be outlined that the width b
of the inlet channel, which is used to define the dimensionless parameter E R, is kept constant
throughout the present study. Therefore, the scalability of the hereafter obtained results with
respect to this parameter should be verified based on a separate set of experimental data.
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Fig. 1 Plan view of the experimental rectangular basin, definition of the geometrical parameters and sketch
of the flow pattern in test no. 1 (see Table 1)

Table 1 Configurations of tested
geometries and corresponding
geometrical parameters

Test no. L (m) B (m) L/B (−) B/b (−)

1 6.0 4.0 1.5 16

2 5.0 4.0 1.25 16

3 4.0 4.0 1.0 16

4 3.0 4.0 0.75 16

5 6.0 3.0 2 12

6 6.0 2.0 3 8

7 6.0 1.0 6 4

8 6.0 0.5 12 2

In spite of the symmetric setup, an asymmetric flow pattern is observed experimentally
for tests no. 1, 5, 6 and 7. On the contrary, the flow remains mainly symmetric for tests no.
2, 3, 4, and 8. Figure 2 shows observed flow fields and streamlines for tests no. 1 and no. 4
[8,15].

It can be noticed (Fig. 2a) that the jet issuing from the inlet channel is considerably devi-
ated in test no. 1 and three large scale vortices develop, including a main large one rotating
anticlockwise in the centre part of the basin. Furthermore, two smaller vortices rotating
clockwise are formed in the upstream corners of the basin.

The system tends to deviate alternatively to one side or to the other one, depending
on slight disturbances existing in the initial and boundary conditions. This deviation is
thus observed to be random, indicating that there is no systematic effect, as discussed by
Kantoush (2007) [7] and Kantoush et al. (2006) [8], who state that a stable mirror image of
the flow pattern can easily be established by slightly disturbing the initial condition. How-
ever, all the flow patterns presented in this paper have been selected among the observed flow
patterns characterized by a deviation towards the right, for the single purpose of facilitating
comparisons between the different geometries.
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Fig. 2 Experimentally observed flow field and streamlines for geometries no. 1 (a) and no. 4 (b) [7]

The deflection of the jet can be explained by observing that a velocity increase on one side
of the jet leads to a local reduced pressure, which in turn tends to amplify the deflection of
the flow (Coanda effect) [20]. Simultaneously, in the deviated jet, an increase of the velocity
leads to increased centrifugal forces, which tends to re-establish the symmetry of the flow
pattern. A balance between those two effects is reached in the steady state.

For smaller basin widths or shorter basin lengths, as for instance in the case of test no. 4
(Fig. 2b), the flow remains essentially symmetric, with one circulation cell on each side of
the centreline.

3 Brief description of the numerical model WOLF 2D

Depth-averaged flow simulations representing the experimental set-up have been performed
with the numerical model WOLF 2D, developed at the University of Liege and based on an
original finite volume scheme [16,17].

3.1 Mathematical model

The model is based on the two-dimensional depth-averaged equations of volume and momen-
tum conservation, namely the “shallow-water” equations. In the “shallow-water” approach
the only assumption states that velocities normal to a main flow direction are smaller than
those in the main flow direction. As a consequence the pressure field is found to be almost
hydrostatic everywhere. The large majority of flows occurring in rivers, even highly tran-
sient, can reasonably be seen as shallow, except in the vicinity of some singularities. In the
present study, measured vertical velocity components have been verified to remain low com-
pared to velocity components in the horizontal plane. Therefore the flow in the basin may be
considered as shallow and thus mainly two-dimensional [9].
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Simplified for a flat bottom, the depth-averaged equations of mass and momentum con-
servation [21] can be written as follows, using vector notations:

∂�s
∂t

+ ∂ �f
∂x

+ ∂ �g
∂y

+ ∂ �fd
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+ ∂ �gd

∂y
= �Sf, (1)

with �s = [h hu hv]T the vector of the conservative unknowns. �f and �g represent the advective
and pressure fluxes in directions x and y, while �fd and �gd are the diffusive fluxes:
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�Sf designates the friction term:

�Sf = [
0 τbx/ρ τby/ρ

]T
. (3)

The following notations have been used: t represents the time, x and y the space coordinates,
h the water depth, u and v the depth-averaged velocity components, g the gravity accelera-
tion, ρ the density of water, τbx and τby the bottom shear stresses, σx and σy the turbulent
normal stresses, and τxy the turbulent shear stress.

The bottom friction is conventionally modelled thanks to an empirical law, such as the
Manning formula. The model enables the definition of a spatially distributed roughness
coefficient. Besides, the friction along side walls is reproduced through a process-oriented
formulation developed by the first, third and fifth authors [16]:
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where the Manning coefficient nb and nw (s/m1/3) characterize, respectively, the bottom and
the side-walls roughness. Those relations are particularized for Cartesian grids, as exploited
in the present study. Values of nb = 0.01 s/m1/3 and nw = 0.02 s/m1/3 are used hereafter.
The higher friction coefficient for the walls is justified by not-perfectly plane side-walls.

The turbulent stresses are expressed following the Boussineq’s approximation (transposed
for a depth-averaged model) [22,23]:

σx

ρ
= 2 (ν + νT)

∂u

∂x
,

σy

ρ
= 2 (ν + νT)

∂v

∂y
,

τxy

ρ
= τyx

ρ
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(
∂u

∂y
+ ∂v

∂x

)
, (5)

where ν represents the molecular kinematic viscosity, while the turbulent eddy viscosity
νT is computed by a turbulence closure model (ν � νT). For this purpose, two different
approaches are compared in this study (see Subsect. 4.2). First, a simple algebraic turbu-
lence closure is adopted, assuming that the turbulence is bed-dominated. In such a case, the
turbulent kinematic viscosity may be expressed as:

νT = αhu∗, (6)
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with α taking values of the order 0.5 [24]. Second, an original depth-averaged k-ε model
with two different length-scales accounting for vertical and horizontal turbulence mixing has
been applied, as developed by Erpicum [17].

3.2 Numerical implementation and boundary conditions

The space discretization of the divergence form of the 2D conservative shallow-water equa-
tions (1) is performed by means of a finite volume scheme. For the applications considered in
this study, this approach warranties that the numerical model is free from mass and momen-
tum conservation errors. A Cartesian grid is exploited, with a cell size of 0.025 m. Variable
reconstruction at cells interfaces is performed linearly, in conjunction with slope limiting,
leading to a second-order spatial accuracy.

Appropriate flux computation has always been a challenging issue in computational fluid
dynamics. In the present study, fluxes �f and �g are computed by a Flux Vector Splitting (FVS)
method developed by the first, third and fifth authors. Following this FVS, the upwinding
direction of each term of the fluxes �f and �g is simply dictated by the sign of the flow velocity
reconstructed at the cells interfaces. It has thus the advantage of being completely Froude
independent and of facilitating a satisfactory adequacy with the discretization of the bottom
slope term if present [17]. It can be formally expressed as follows:
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where the exponents + and − refer to, respectively, an upstream and a downstream evalu-
ation of the corresponding terms. A Von Neumann stability analysis has demonstrated that
this FVS leads to a stable spatial discretization of the terms ∂ �f /∂x and ∂ �g/∂y in Eq. 1 [16].
This FVS has already proved its validity and efficiency for numerous applications [16,17,25,
26]. Due to their diffusive nature, the fluxes �fd and �gd are legitimately evaluated by means
of a centred scheme.

Since the model is applied to compute steady-state solutions, the time integration is per-
formed by means of a three-step first order accurate Runge–Kutta algorithm, providing ade-
quate dissipation in time. For stability reasons, the time step is constrained by the Courant–
Friedrichs–Levy (CFL) condition based on gravity waves. A semi-implicit treatment of the
bottom friction term (3) is used, without requiring additional computational costs.

The value of the specific discharge is prescribed as an inflow boundary condition. Besides,
the transverse specific discharge is set to zero at the inflow. The outflow boundary condition
is a constant water surface elevation: 0.2 m. At solid walls, the component of the specific
discharge normal to the wall is set to zero. For the purpose of evaluating the diffusive terms,
the gradients of the unknowns must also be specified at the boundaries. These gradients in
the direction parallel to the boundary are set to zero for simplicity, while the gradients of the
variables in the direction normal to the boundary are properly evaluated by finite difference
between the value at the boundary and the value at the centre of the adjacent cell [17].

3.3 Other features of WOLF 2D

The herein described model constitutes a part of the modelling system “WOLF”, developed
at the University of Liege. WOLF includes a set of complementary and interconnected mod-
ules for simulating free surface flows: process-oriented hydrology, 1D & 2D hydrodynamic,
sediment [16] or pollutant transport, air entrainment, as well as an optimisation tool (based
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Fig. 3 Flow field simulated with a uniform specific discharge profile at inflow (algebraic turbulence closure).
Velocity magnitude in m/s

on Genetic Algorithms) [17]. Other functionalities of WOLF 2D include the use of moment
of momentum equations [16], the application of the cut-cell method [17], as well as com-
putations considering vertical curvature effects by means of curvilinear coordinates in the
vertical plane [25]. The model deals with multiblock [17] Cartesian grids and includes an
automatics mesh refinement algorithm. A grid adaptation technique restricts the simulation
domain to the wet cells. Besides, wetting and drying of cells is handled free of mass and
momentum conservation errors [17].

4 Numerical results and analysis

4.1 Ability of the model to represent the flow instability

A first simulation has been performed based on the geometry and inflow/outflow conditions
of the physical model. The algebraic turbulence model is used and the simulation is run until
a steady-state flow field is reached. This obtained simulated flow field is perfectly symmetric
(Fig. 3). Although not in agreement with experimental observations, this result was expected
since neither the mathematical model nor the algorithm implementation are supposed to
break the perfect symmetry of input data. Consequently, this first simulation result demon-
strates that the model does not include any spurious numerical artefact tending to introduce
dissymmetry in a problem with perfectly symmetric input data.

However, according to laboratory experiments, this symmetric flow field is not stable.
Therefore, a second series of simulations has been undertaken with slightly disturbed distri-
butions of the specific discharge at the inflow, in order to test the stability of the numerical
solution. Instead of being uniform, the cross-sectional profile of the specific discharge is
specified with a linear variation along the width of the inlet channel:

qin(y) = q0 + q12y/b, (8)
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Fig. 4 Flow field simulated with a disturbed specific discharge profile at inflow (algebraic turbulence closure).
Velocity magnitude in m/s

where qin (m2/s) denotes the actual value specified as inflow boundary condition, q0 (m2/s)
is the reference value (total discharge divided by channel width) and q1 (m2/s) measures the
magnitude of the linear variation. b (m) designates the width of the inlet channel and y (m)
is the transverse coordinate, varying between −b/2 and b/2.

As shown in Fig. 4, considering a minor change in the inflow boundary condition (with
q1/q0 = 2%) leads to a totally different flow field. The output of the numerical model
becomes globally consistent with experimental observations. Indeed, the deviation of the
main jet is reproduced. The existence of three main vortices, as highlighted experimentally,
is also predicted by the numerical model. The simulated reattachment length Lr1 is 2.53 m,
which is less than 5% shorter than the experimental one of 2.65 m. Note that neglecting
the side-wall friction in identities (4) prevents the numerical model from reproducing the
upstream left vortex (see in inset in Fig. 4).

The artificial disturbance of the flow introduced here, through the non-uniform profile of
specific discharge, represents actually unavoidable small disturbances existing in the exper-
imental set-up. The slight perturbation of the inflow has a particularly strong effect on the
results because of the unstable nature of the symmetric flow field (see Sect. 7). As a conse-
quence, it can be concluded that the numerical model is able to reproduce the high sensitivity
of the real flow to external disturbances and hence the unstable nature of the symmetric
solution in the present configuration.

Besides, the jet can be deviated either towards the right or towards the left side of the basin.
In other words, two stable solutions exist and either of them can be obtained depending on
the sign of q1 or on the sense of the deviation in the initial condition. The occurrence of
two distinct stable flow fields is also confirmed by the experimental tests [7]. The similar
existence of multiple solutions were reported previously by other authors [4].

It has been verified that, even with a uniform specific discharge profile as inflow bound-
ary conditions, similar simulation results can also be obtained by starting the computation
with a flow field initially deviated. In this case, the non-symmetric initial condition acts as a
disturbance [4]. Nevertheless, this approach is not further explored in the present study.

Moreover, although the flow may deviate alternatively towards the right or towards the
left, all simulation results presented in the present paper have been selected with the same
deviation in order to make comparisons easier between the different geometries considered.

For comparing symmetric and non-symmetric results, a suitable quantitative indicator of
the “intensity” of the non-symmetry of the flow field is introduced. It consists in evaluating
the moment m of the u-velocity field with respect to the centreline of the basin. The indicator
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Fig. 5 Non-dimensional moment m of the flow field in the rectangular basin of 6 m by 4 m

is defined in non-dimensional form as follows:

m(x) = 1

B

B/2∫

−B/2

u(x, y) − U

U

2y

B
dy = 1

B

B/2∫

−B/2

( u

U
− 1

) 2y

B
dy = 2

U B2

B/2∫

−B/2

uy dy; (9)

where U (m/s) is a reference velocity. The following value has been considered:
U = Q/(Bh0), where h0 (m) corresponds to the water depth at the downstream bound-
ary condition, Q (m3/s) is the total discharge and B (m) the basin width.

For any flow field which is symmetric with respect to the centreline, the moment remains
equal to zero. For non-symmetric flow fields, the moment quantifies the deviation of the
actual velocity profile compared to a symmetric one. For instance, m = 1 if the velocity pro-
file varies linearly between both side-walls of the basin with a difference between maximum
velocity and mean velocity equal to three times the mean velocity.

In Fig. 5, the moment of the measured and simulated flow fields with either the algebraic
or the k-ε turbulence closure (see Subsect. 4.2 for a more comprehensive discussion) are
compared. It can be seen that the sign of the moment provides information on the sense of
rotation of the main vortices. In the upstream part of the basin, negative values of m corre-
sponds to an anti-clockwise rotating vortex, while in the rest of the basin, positive values of
m indicate a clockwise rotating vortex.

The moment m characterizes the asymmetry of the flow field in any given cross-section.
It can be further averaged along the basin length L , to provide a global quantitative indicator
of non-symmetry of the flow in the whole computation domain (see Sect. 5):

M = 1

L

L∫

0

|m|dx . (10)

The absolute value of m is used in order to prevent any compensation between values of
opposite sign.

In order to verify that the simulated flow field does not significantly depend on the arbi-
trary value selected for the disturbance q1, five simulations have been run with q1/q0 varying
between 1 and 5% (Table 2). In every case, the flow field remains very close to that one
observed at the laboratory. For disturbance intensities between 1 and 5%, simulated results
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Table 2 Length-averaged moment of the flow field for five different disturbance intensities at inflow

Disturbance q1/q0 0% 1% 2% 3% 4% 5%

Global moment M (−) 0.0000 1.9025 1.9057 1.9068 1.9082 1.9096

present almost no effect (< 0.5%) of the disturbance intensity, as shown by the comparison
of the global moment M values in Table 2.

4.2 Detailed comparison between simulated and measured flow fields

Figure 6 presents the measured and simulated u component of the velocity in four different
cross-sections in the basin.

Figure 6a, b show that the algebraic turbulence closure tends to overestimate the velocity
magnitude in the upstream right vortex, while the k-ε model provides more accurate values
of the velocity in this vortex. On the contrary, the main jet simulated by means of the k-ε
model remains too concentrated and the diffusion of the jet is better predicted by the alge-
braic turbulence closure. As mentioned previously, the simulation based on the algebraic
turbulence closure leads to a satisfactory prediction of the main reattachment length. Figure
6c shows that, at cross-section x = 3 m, the flow velocity computed by the k-ε model is
still reversed, while the experimental measurements confirm that the reattachment length is
actually already exceeded. Indeed, the k-ε model overestimates the reattachment length by
0.75 m (predicted value: 3.40 m, instead of 2.65 m). Finally, it must be noted that the algebraic
turbulence closure predicts a small, however unrealistic, recirculation in the vicinity of the
outlet channel, as can be seen on Fig. 4. The k-ε model simulates a much more realistic flow
field in this area.

It may be concluded that the numerical model captures at least qualitatively the global
pattern of the complex flow field in the shallow reservoir. It reproduces both the main jet
deflection and the development of the three main vortices. Moreover, the relative location
and size of these vortices are predicted rather satisfactorily. Nevertheless, the prediction of
the details of the flow field has still to be improved, as revealed by the comparison of veloc-
ity distributions in cross-sections. Indeed, the quantitative predictions of the depth-averaged
velocity are found to deviate locally by up to 50%, and even more in some regions. Some of
these discrepancies are obviously also due to the fact that experimental data refer to surface
velocity, while the simulated results are depth-averaged and are thus expected to take lower
values.

5 Influence of basin geometry on flow stability

The herein presented comparison with experimental results focuses on the ability of the
numerical model to predict the transition between stable and unstable configurations. For
each specific geometry (see Table 1), the stability of a symmetric flow field is analysed by
considering “quasi-symmetric” input data, as used in Subsect. 4.1. “Quasi-symmetric” input
data means symmetric geometry, outflow conditions and initial conditions, but slightly dis-
turbed inflow boundary condition, according to relation (8). A geometric configuration will
be referred to as stable if a symmetric flow field remains stable for quasi-symmetric input
data. On the contrary, the configuration will be said to be unstable if, for quasi-symmetric
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(a)

(b)

(c)

(d)

Fig. 6 Measured and simulated (with disturbance) velocity profiles in four cross-sections of the basin:
(a) x = 1.5 m, (b) 2 m, (c) 3 m and (d) 4.5 m from the inlet

input data, a symmetric flow field becomes unstable and the actual steady solution deviates
considerably from the symmetric one.

Figure 7 shows the measured and simulated flow fields for a constant basin width (4 m) and
a basin length reduced from 6 to 3 m. For a length L = 5 m, 4m and 3 m a stable symmetric
flow field is present, while for L = 6 m this is not the case, as already shown in Fig. 4. This
classification between stable and unstable configurations obtained from the 2D numerical
simulations is in agreement with experimental results.

Similarly, measured and simulated flow fields are compared in Fig. 8, for a constant basin
length (6 m) but a varying basin width (in-between B = 0.5 m and B = 4 m).
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Fig. 7 Experimental (left) and simulated (right) flow fields in the basin 4 m wide and (a) 6 m long (test no. 1),
(b) 5 m long (test no. 2), (c) 4 m long (test no. 3) and (d) 3 m long (test no. 4)

All configurations lead to a deviated flow, except the narrowest one, namely B = 0.5 m.
This conclusion is in agreement with experimental data, which means again that the numerical
model performs well in identifying the stable and the unstable tested configurations.

Figure 9 summarizes the results obtained for the eight different geometries by showing
the curve of the moment m for each computed flow field (solid lines). The four non-trivial
curves correspond to the four different basin widths and to the single basin length which
lead to an instability of a symmetric flow field, whereas all stable configurations are repre-
sented by a uniform zero-value of m, which is consistent with the role of m as an indicator of
non-symmetry. Experimental data are also reproduced in Fig. 9 (dotted lines), recalling that
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Fig. 8 Experimental (left) and simulated (right) flow fields in the basin 6 m long and (a) 4 m wide (test no. 1),
(b) 3 m wide (test no. 5), (c) 2 m wide (test no. 6), (d) 1 m wide (test no. 7) and (e) 0.5 m wide (test no. 8)
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Fig. 9 Non-dimensional moment m of the flow field in the rectangular basin of varying width. Numerical
results (solid lines) and experimental data (dotted lines) are reproduced

the numerical model succeeds in simulating the global pattern of the flow but still requires
enhancements to achieve a satisfactory quantitative agreement with measurements.

The moment m plotted in Fig. 9 is a preliminary step to evaluate the length-averaged
moment M , as defined by relation (10), in order to illustrate the bifurcating behaviour of the
flow field in the studied shallow basins.
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(a) (b)

Fig. 10 Bifurcation diagram showing the global moment M as a function of different aspect ratios (a, for
varying basin length) and of different expansion ratios (b, for varying basin width)
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Fig. 11 Bifurcation diagram showing the mean moment M as a function of the combined indicator R. Circles
correspond to tests with varying length and diamonds to tests with varying width

A bifurcating solution is a solution which can branch (bifurcate) from a given basic solu-
tion when the basic solution loses its stability with respect to disturbances. Moreover, once
a bifurcation takes place, at least one symmetry property of the base flow solution is broken
[27]. Such a bifurcation phenomenon is dependent on a controlling parameter R, which in
the present case is either one of the two geometric ratios ER or AR defined in Sect. 2. The
flow solution is said to bifurcate from the base flow solution at R = Rc if for R > Rc there
are at least two solutions which merge with the base flow solution for R < Rc [27]. Indeed,
in the present case, the non-symmetric solutions can be equally obtained on one side or on
the other one. In Fig. 10, the global moment M is plotted as a function of the aspect ratio
AR for the different tested basin lengths (a) and as a function of the expansion ratio E R for
the different basin widths considered (b).

In order to represent all global moments in a single bifurcation diagram, a single control-
ling parameter R, combining E R and AR, has been identified, in such a way that a threshold
value Rc delineates all symmetric cases (R < Rc) of all non-symmetric ones (R > Rc). If
each geometry is represented by one point in the plane (AR, ER), this plane can be divided
into two regions: the first one containing the points representing stable configurations and the
second one corresponding to unstable configurations. The marginal stability curve, delineat-
ing the boundary between both sets of points, can be mathematically approximated by the
following function: E R � (0.035AR)−8/9. As a result, R = E R × AR8/9 ≈ E R × AR0.89

may be used as the controlling parameter to plot the global bifurcation diagram, as displayed
by Fig. 11. The precise formulation of the indicator R should of course be confirmed based
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Fig. 12 Non-dimensional moment m of the flow field in the rectangular basin of 6 m by 4 m for four different
water depths as downstream boundary conditions

on additional experimental tests or numerical simulations, dedicated to refining the interval
in which each bifurcation apex is located (see Fig. 10).

6 Influence of hydraulic conditions on flow stability

Finally, the influence of the hydraulic conditions on the stability of the flow in the original
basin (6 m by 4 m) has been appreciated by varying the water depth between 0.075 and
0.200 m (Table 3). Figure 12 shows the non-dimensional moment m for the four different
hydraulic conditions considered and reveals that the jet deviation tends to be reduced for
decreasing water depth. Indeed, due to the higher flow velocity, the stabilizing effect of bed
friction is amplified when the water depth is reduced. The relative importance of bottom
friction forces compared to turbulent diffusion can be evaluated by the product of the bottom
friction parameter S, defined as S = (b/2h)(gn2/h1/3) in the case of the Manning friction
law, and the turbulent Reynolds number ReT (based on the turbulent eddy viscosity). As
shown in Table 3, the product S × ReT is increased by almost one order of magnitude when
the water depth is varied from 0.020 to 0.075 m. Nevertheless, the flow field remains signif-
icantly non-symmetric in all four tested cases. This observation is confirmed by the values
of the global moment M displayed in Table 3.

7 Theoretical analysis of the flow stability

The linear stability analysis provides an indication on whether a particular base flow is stable
or unstable and can be used to describe the structure of the critical motion which takes place
just above the threshold [10]. Mathematically, the problem consists in predicting the evolu-
tion of an arbitrary disturbance assumed to be initially superposed on the symmetric base
flow. If the disturbance vanishes for t → ∞, the flow field is regarded as stable, otherwise it
is deemed as unstable [28]. In order to predict the behaviour of the disturbance, one assumes
that the disturbance is small enough, so that the equations governing their evolution may be
linearized. Such an approach is adequate because the interest is focused on the onset of a
possible instability of a given symmetric base flow [28].
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Table 3 Tested water depths as downstream boundary condition and corresponding non-dimensional numbers
as well as global moment

Water depth downstream h0(m) 0.200 0.150 0.100 0.075

Froude number Fr (−) 0.10 0.15 0.28 0.44

Reynolds number Re (−), based on molecular 1.75 × 104 2.33 × 104 3.50 × 104 4.67 × 104

viscosity

Reynolds number ReT (−), based on turbulent 153 194 272 346

viscosity

Bottom friction parameter S (−) 1.05 × 10−3 1.54 × 10−3 2.64 × 10−3 3.88 × 10−3

Product S × ReT (−) 0.16 0.30 0.72 1.34

Global moment M (−) 1.9057 1.6953 1.3425 1.2925

Fig. 13 Flow field simulated with a uniform specific discharge profile at inflow for the 3 m:4 m basin (algebraic
turbulence closure). Velocity magnitude in m/s

Two distinct base flows are considered, namely the symmetric undisturbed solutions in
the 6 m by 4 m basin (see test no. 1 in Table 1 and Fig. 3) and in the 6 m by 0.5 m basin (see
test no. 8 in Table 1 and Fig. 13).

7.1 Governing equation for small perturbations

The rigid-lid approximation is adopted for the linear stability analysis. This assumption is
valid for low Froude numbers (Fr <0.6∼0.7), as revealed by computations performed by
Ghidaoui and Kolyshkin (1999, 2003) [2,10], which is verified in the present case: Fr ∼ 0.1.
In such conditions, motions of interest are not associated to gravity waves and the rigid-lid
approximation is hence appropriate. Moreover, water depths are quasi constant in the basin.
Indeed their average value is 0.201 m, with a standard deviation below 10−4. As a result of
the rigid-lid assumption, it will be possible to reduce the governing system of equations for
disturbances to a single scalar equation. For a constant water depth, the rigid-lid form of the
shallow-water equations (1) can be written as follows [1,3]:

∂u

∂x
+ ∂v

∂y
= 0 (11)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
− gn2

b

h4/3 u
√

u2 + v2 + νT

(
∂2u

∂x2 + ∂2u

∂y2

)
, (12)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
− gn2

b

h4/3 v
√

u2 + v2 + νT

(
∂2v

∂x2 + ∂2v

∂y2

)
, (13)

where the wall-roughness is neglected and the turbulent kinematic viscosity is considered as
constant.
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Fig. 14 Transverse profiles of the longitudinal velocity computed for test no. 1 (6 m by 4 m) and test no. 8
(6 m by 0.5 m)

Several authors have shown that the shape of the transverse profile of the longitudi-
nal velocity has a prevailing influence on the stability characteristics of shallow flows [10].
Therefore, in the following, the stability of the u velocity profile in a number of cross-sections
is investigated (see Fig. 14).

Hence, the base flow is assumed to have the following structure:

u = u0(y), v = 0, p = p0(x). (14)

The pressure field p0 verifies the longitudinal momentum conservation:

∂p0

∂x
= − gn2

b

h4/3 u2
0 + νT

(
∂2u0

∂y2

)
= G, (15)

where G is assumed not to depend on y (see Chu et al. 1991 [3]).
The selection of the plane parallel base flow (14) constitutes obviously a first approxima-

tion, since both the streamwise velocity gradients and the transverse velocities are neglected.
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However, even such a simple approach will provide some valuable results on the relative
stability of the different tested configurations.

Substituting (14) into Eqs. 11–13 and linearizing the equations in the neighbourhood of
the base flow, the following system of ordinary differential equations for the disturbances u′,
v′ and p′ is obtained:

∂u′

∂x
+ ∂v′

∂y
= 0, (16)

∂u′

∂t
+ u0

∂u′

∂x
+ v′ ∂u0

∂y
= − 1

ρ

∂p′

∂x
− 2

gn2
b

h4/3 u0u′ + νT

(
∂2u′

∂x2 + ∂2u′

∂y2

)
, (17)

∂v′

∂t
+ u0

∂v′

∂x
= − 1

ρ

∂p′

∂y
− gn2

b

h4/3 u0v
′ + νT

(
∂2v′

∂x2 + ∂2v′

∂y2

)
, (18)

with the following boundary conditions at y = ±B/2:

v′ = 0 and
∂v′

∂y
= 0. (19)

By combining those three equations, a single scalar equation for the transverse velocity v′
can be obtained, the solution of which is simpler than a direct integration of the complete
system.

If one differentiates (17) with respect to y, (18) with respect to x , and takes the difference,
the pressure drops out and, after differentiating once more with respect to x and introducing
(16) to eliminate u′, the following result is obtained:

u0

(
∂3v′

∂x∂y2 + ∂3v′

∂x3

)
+ ∂3v′

∂t∂y2 + ∂3v′

∂t∂x2 − ∂v′

∂x

d2u0

dy2

= − gn2

h4/3

(
2
∂v′

∂y

du0

dy
+ 2u0

∂2v′

∂y2 + u0
∂2v′

∂x2

)
+ νT

(
∂4v′

∂x4 + 2
∂4v′

∂x2∂y2 + ∂4v′

∂y4

)
.

(20)

Following the conventional approach for linear stability analysis, the small-amplitude dis-
turbances superimposed on the base flow are harmonic in x , t [1,3]:

v′ = φv (y) eik(x−ct), (21)

in which φv (m/s) is a complex amplitude function, k (rad/m) is the wave number of the dis-
turbance and c (m/s) has real and imaginary parts: c = cr + ici. The real part cr is the wave
velocity and the imaginary part ci multiplied by k is the amplification rate of the disturbance.
The boundary conditions (19) on the velocity disturbance v′ imply similar specifications on
the disturbance amplitude at y = ±B/2: φv = 0 and ∂φv/∂y = 0.

The values of c are determined by an eigenvalue problem (see below): cs = crs + icis,

s = 1, 2, . . . and they control the linear stability of the base flow described by (14). This base
flow is said to be linearly stable if cis < 0 for all s and k, and linearly unstable otherwise.
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Introducing (21), one obtains the following ordinary differential equation:

(u0 − c)

(
d2φv

dy2 − k2φv

)
− d2u0

dy2 φv

= −ξ

(
−k2φv + 2

d2φv

dy2 + 2

u0

du0

dy

dφv

dy

)
+ νT

ik

(
d4φv

dy4 − 2k2 d2φv

dy2 + k4φv

)
,

(22)

where the friction parameter ξ is defined as follows:

ξ = gn2

h4/3

u0

ik
(23)

Equation 22 is the modified Orr–Sommerfeld equation, as derived by van Prooijen et al.
(1997) [29], particularized to the Manning formula for bed friction. Equation 22 together
with the boundary conditions (19), implying that φv = 0 and ∂φv/∂y = 0 at y = ±B/2,
form an eigenvalue problem. If the turbulent viscosity is set to zero, equation (22) is known
as the Rayleigh equation modified to account for bed friction.

7.2 Resolution of the governing equations for disturbances

A number of techniques are reported in the literature for solving (22), such as the pseudo-
spectral collocation methods based on Chebyshev polynomials [2,30]. Here, the numerical
procedure for the solution of the eigenvalue problem is based on a finite difference scheme
[29].

Prior to numerically solve equation (22), an analytical approximation of the solution is
sought. Although rather crude, this analytical approach provides a preliminary insight into the
relative strength of the terms having a damping effect on perturbations for the two considered
base flows.

As a first approximation, φv(y) is assumed to be harmonic with respect to y: φv = �eily ,
where l is the wave number in the y direction. Under such condition, Eq. 22 leads to the fol-
lowing expression for kci, which highlights here the contribution of the two damping effects
in the system, namely friction and turbulent diffusion:

kci = − gn2

h4/3 u0
2l2 + k2

l2 + k2 − νT(l2 + k2). (24)

Dimensionally, the above expression may be considered as the inverse of a characteristic time
τ , the value of which is straightforward to evaluate based on the algebraic closure (6) and if
values of k and l are assumed to correspond, for instance, to the fundamental mode: k = π/L
and l = π/B. The values of τ corresponding to the two considered base flows, namely τ1

and τ8 referring, respectively, to test no.1 and test no. 8, may be compared: τ1/τ8 � 3.3,
revealing that the “damping rate” |kci| is above three times higher in the case of Test 8 and
the damping of perturbations is hence correspondingly stronger.

Second, a finite difference technique has been used to solve the eigenvalue problem asso-
ciated to Eq. 22 in the domain defined by: −B/2 ≤ y ≤ B/2. In a first approximation, the
modified Rayleigh equation is considered. The base flows u0(y) are velocity profiles (see
Fig. 14) extracted from the symmetric flow fields illustrated in Figs. 3, 13, which result from
2D computations by means of the above-mentioned 2D finite volume model (see Sect. 3).
Therefore the same mesh size is kept for the finite difference grid. Nodes are placed at the
boundaries y = ±B/2, to enable easy specification of the remaining boundary condition:
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Fig. 15 Wave amplification rate: max
s

(kcis ) (rad/s), as a function of the wave number k (rad/m), computed

for velocity profiles corresponding to test no. 1 (solid lines) and test no. 8 (dashed lines) in nine different
cross-sections located at a distance x from the inlet

φv = 0 on the walls. Based on centred finite differences, the derivatives of φv and u0 involved
in Eq. 22 are discretized. The resulting symbolic expression can formally be written as:

(A − cB) �φ = 0 (25)

where �φ designates the vector of the approximations of φv at the nodes of the finite difference
grid.

Non-trivial solutions of (25) are only possible if det (A − cB) = 0. This constraint leads
to a spectrum of eigenvalues cs for each wave number k. Figure 15 shows the wave ampli-
fication rate max

s
(kcis) as a function of the wave number for nine different velocity profiles

identified by their longitudinal coordinate x . In the case of test no. 1, for all velocity profiles
except one (x = 5 m), the amplification rate is significantly higher than zero in a wide range
of wave numbers, revealing that the symmetric flow field is definitely unstable in this geo-
metric configuration. This result is consistent with experimental observations (Fig. 2) and 2D
simulations (Fig. 4).

For test no. 8, cis takes negative values for several velocity profiles and remains in all cases
much smaller than for test no. 1. Maximum amplification rates are about 20 times smaller
for test no. 8 than for test no. 1, revealing a far less unstable symmetric flow field for the
geometric configuration of test no. 8 than in test no. 1. This is again in agreement with both
experimental data and with the computed flow field (see Fig. 8). The remaining non-negative
values of cis are most probably explained by the rather crude approximation (14) taken for
the base flow and the fact that one consequently neglects the truly two-dimensional features
of the actual base flow in the basin with the sudden expansion and contraction (u0 (x, y),
v0 (x, y) �= 0).

8 Summary and conclusions

The present paper presents numerical and theoretical analyses of shallow flows in a series
of rectangular basins with experimental data. The experimental results include flow visu-
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alization for a constant discharge but for eight different basin geometries (varying length
and varying width of the basin). Systematically the length and width of the basin have been
decreased starting from a 6 m long and 4 m wide basin. They show that, in spite of the
geometrically and hydraulically symmetric setup with respect to the centreline of the basin,
non-symmetric flow fields are observed for certain geometric and hydraulic conditions, while
the flow field remains symmetric in narrower or shorter basins. In the case of non-symmetric
flow patterns, three main vortices can be identified in the flow field.

Numerical modelling has been performed with the conservative finite volume algorithm
WOLF 2D, solving the shallow-water equations. Both an algebraic turbulence closure and
a k-ε model are exploited and compared. For symmetric input data, the numerical model
provides also a perfectly symmetric result. However, if the inflow boundary condition is dis-
turbed by a slightly non-uniform velocity distribution, the numerical model reproduces both
the symmetric and non-symmetric flow patterns as observed in the laboratory experiments.
On one hand, for the geometries corresponding to an observed non-symmetric flow field, the
numerical model converges towards a completely deviated flow field, the global pattern of
which is consistent with laboratory observations. The result is essentially insensitive to the
arbitrary amplitude of the small disturbances superimposed to the inflow boundary condition.
On the other hand, for the geometries corresponding to an observed symmetric flow field, the
slight disturbances introduced upstream are quickly damped and the computed steady flow
field is found almost symmetric. Moreover, the numerical model accounts for wall rough-
ness, which appears decisive for a proper reproduction of the third vortex, located in the
upper part of the basin, in the case of non-symmetric flow fields. Consequently, for the tested
configurations, the 2D simulations are found to succeed in predicting the influence of the
length and width of the basin on the global flow pattern or, in other words, the influence of
the expansion ratio ER and of the aspect ratio AR of the basin. Numerical and experimental
results are compared by means of the first moment of the longitudinal velocity field about
the centreline of the basin, which serves as a useful quantifier of “non-symmetry”. Indeed,
it remains equal to zero for all symmetric flow fields and increases with the dissymmetry of
the flow pattern.

The influence of bottom roughness will be systematically analyzed in a subsequent work.
Finally, a linear analysis has been undertaken to appreciate the stability of transverse

profiles of the longitudinal velocity in simulated symmetric flow fields. The system of 2D
equations governing the flow has been simplified according to the rigid-lid approximation,
which is known to be valid for Froude numbers as low as the present ones (Fr ∼ 0.1), lead-
ing to a modified Orr–Sommerfeld equation taking into consideration the Manning friction
formula. A modified Rayleigh equation is obtained if turbulent diffusion is neglected.

An approximated solution in the form of a harmonic function has first been used to describe
the relative importance of the damping effects for the two considered base flows (test no.1
and test no. 2). The damping rate is shown to be weaker in the configuration which leads
to a flow instability. Secondly, a finite difference scheme is used to discretize the modified
Rayleigh equation, enabling to solve the corresponding eigenvalue problem. The deduced
wave amplification factors lead to a clear distinction between an unstable and a more stable
symmetric flow field for two different geometries, consistently with above-mentioned find-
ings of physical and numerical modelling. This analysis focuses on the possible onset of an
instability and cannot directly predict the length scales of the eddies observed experimentally.
Therefore, the present appreciation should be confirmed by further investigations, possibly
based on (weakly) non-linear stability analysis.
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More generally, the herein presented study recalls the practical importance in hydrau-
lic engineering of complementing the computational design of hydraulic constructions by a
careful verification of the stability of the expected flow fields.
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