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ABSTRACT
Understanding the dynamics of flooding events is crucial to miti-
gate flood risks, particularly in developing nations like Sudan. This
study combines multi-sensor approaches with Rainfall-Runoff-
Inundation (RRI) modeling to predict flood inundation extent over
the Nile River Basin (NRB). Building upon the RRI model, we firstly
simulated the streamflow over the Blue Nile basin and the White
Nile basin. Our results show a good agreement between the
observed and the simulated streamflow at both daily and
monthly scales, e.g. NSE ¼ 0.72 and R2 ¼ 0.85 for daily simula-
tions at Khartoum station. Further, we compared the inundation
extents from the RRI model with derived inundation maps from
different satellite images (Sentinel-1, Sentinel-2, Landsat-8, and
MODIS). The results indicate the potential to overcome the limita-
tion of data scarcity in developing regions and hence provide a
supportive assessment tool for flood risk maps in the NRB.
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GRAPHICAL ABSTRACT

1. Introduction

Flood is one of the most harmful natural hazards worldwide that has a detrimental effect
on human life and socio-economic. Recently, extreme flood events have occurred more
frequently, resulting in colossal damage in several regions of the world (Chau 2017;
Gelete et al. 2020). According to the Centre for Research on the Epidemiology of
Disasters (CRED), flood events in 2019 were accountable for around 49% of global natural
catastrophes, leading to the death of 43% of people among the total casualties of this year
and hurting 33% people of the total number of affected people (CRED 2020). However,
in 2020, the annual average of flood events increased from 163 to 201 by up to 23% with
an increase of up to 18% of the yearly average of deaths which is 5,233 deaths, see Figure
S1(a). For the same year 2020, floods in Africa harmed 7 million people and killed more
than 1200 people, the highest number of deaths since 2006 (CRED and UNDRR 2021).
Sudan is considered a flood-prone country inside the African continent, as displayed in
Figure S1(b) (Li et al. 2016). In 2020, Sudan saw heavy and continuous rainfall, causing a
catastrophic flood event.

Consequently, thousands of people in 17 states (out of 18 states in Sudan) were
affected during the rainy season from July to September 2020. Khartoum state, the cap-
ital of Sudan, is the joint of the main tributaries of the Nile River: The Blue Nile River
and the White Nile River, which has been one of the most affected by the 2020 flooding
event. Therefore, understanding the flooding phenomena and their consequences is
necessary to mitigate and reduce the damages caused by devastating flood events, par-
ticularly in developing nations like Sudan. Besides, the early flood prediction will help
the decision-maker evacuate inhabitants from regions where harm is imminent.
However, data availability is a significant challenge that researchers in developing coun-
tries typically face.
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Remote sensing data have become an alternative tool for hydrological modeling, and
flood inundation mapping, particularly in either limited-gauged or ungauged regions. A
consensus among space agencies to increase flood monitoring from space has emerged
over the past two decades as a result of growing knowledge of the potential for remote
sensing techniques to monitor floods and so alleviate some of the field data restrictions
(Grimaldi et al. 2016). These remote sensing data will bridge the gap of the shortage of
data availability in flood inundation mapping. In addition, this increasing availability of
data has prompted growing efforts to better understand how remote sensing might
improve flood modeling (Mason et al. 2010). To date, remote sensing data provides good
information on flooding areal extents with comprehensive coverage and multi-temporal
resolution (Khan et al. 2011). However, the frequency of such sensors falls to assess the
flood and cover the spatio-temporal for a specific region (Rosser et al. 2017). For instance,
the Moderate Resolution Imaging Spectroradiometer (MODIS) of the National
Aeronautics and Space Administration (NASA) offers reliable data to monitor floods in
areas where no other means of flood monitoring are available (Khan et al. 2011).

On the contrary, Landsat 8 provides multispectral data with a spatial resolution of 30
meters. Yet, urban and semi-urban areas might have some characteristics that affect flood-
water movement and presence within this cell-size (Rosser et al. 2017). This implies that
remote sensing data are subjected to such uncertainty issues and substantial biases.
Hence, multi-sensors are employed in this study, including Sentinel-1, Sentinel-2,
Landsat-8, and MODIS for flood inundation mapping. One of the challenges is monitor-
ing floods during the rainy season, especially in a tropical zone like Sudan (Tam et al.
2019). However, flood models provide the optimum solution by assessing the current
flood inundation situation based on the spatially distributed, multi-temporal rainfall data.
Therefore, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)
(Funk et al. 2015) was used as an alternative input of precipitation due to the shortage of
observed rain gauges that relies on essential information to derive the rainfall-runoff
model.

Some methods have been widely employed to simulate flood inundation and stream-
flow discharge, including statistical methods, empirical techniques, and rainfall-runoff
models (Try et al. 2018). Additionally, numerous efforts have used hydrodynamic models,
e.g. (Bellos and Tsakiris 2016; Bellos et al. 2020; David and Schmalz 2020; Ming et al.
2020; Costabile et al. 2021; Costabile and Costanzo 2021). Such models can aid in under-
standing the flood dynamics by providing a reasonable prediction of flood risk, including
the areal extent of flood and floodwater depth. However, hydrodynamic models are lim-
ited by several constraints that can hinder their applicability. For instance, data availability
limitation is predominately challenging applications in data-scarce regions as in the
African countries, and the Middle East, and North Africa (MENA) region. In addition,
according to (Afshari et al. 2018), the majority of hydraulic/hydrodynamic models require
significant geographic features, such as cross-sections of the channel and the floodplain,
or the ideal parameter values, which are usually difficult to obtain. Further, many studies
highlighted the computational constraint of hydrodynamic models that limits the applica-
tion of hydrodynamic models in large-scale watersheds, e.g. (Teng et al. 2017; Bellos et al.
2020; Ming et al. 2020). (Teng et al. 2017) reported that the 2D and 3D hydrodynamic
models are often unfeasible for study areas larger than 1000 km2 and thus can’t be used
for real-time inundation forecasting due to expensive computational cost (Bhola et al.
2018).

On the other hand, the open-source Rainfall Runoff-Inundation (RRI) model has been
successfully applied in various regions across the world to predict streamflow and
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associated flood inundation, particularly in large-scale watersheds with limited data avail-
ability, e.g. (Bhagabati and Kawasaki 2017; Abdrabo et al. 2020; San et al. 2020; Saber
et al. 2022). The RRI model provides a monitoring tool to the flooding events in terms of
simulated discharge, water depths, and flood inundation maps. Therefore, we here present
a framework that integrates freely available remote sensing observations (e.g. Landsat and
Sentinel) with open-source flood inundation models (e.g. the RRI model in our study) to
overcome the aforementioned constraints of hydrodynamic models.

Numerous studies have been conducted based on the RRI model across various
regions, i.e. (Bhagabati and Kawasaki 2017; Nastiti et al. 2018; Try et al. 2018; Tam et al.
2019; Try et al. 2020). For instance, (Try et al. 2018) applied the RRI model using remote
sensing precipitation data to predict flood inundation events of 2000 in the Mekong River
basin. In addition, the model has revealed a good performance in the prediction of the
inundation areas of large-scale basins like the upper Citarum River watershed in
Indonesia (Nastiti et al. 2018). On the other hand, such different models were used to
map the flood inundation in several regions such as MIKE FLOOD, HEC-HMS, and
CREST (Patro et al. 2009; Khan et al. 2011; Bhattacharya et al. 2019). Meanwhile, few pre-
vious studies have highlighted the flooding hazards in Sudan. For example, (Khairy
2020)’s study assessed flood hazard and risk and identified flood-prone areas over the
state of Khartoum, Sudan, by analyzing Landsat satellite images for a period of thirty
years from 1988 to 2018. However, there are few studies that evaluate the hazards of the
2020 extreme flooding event in Sudan. In addition, we here assess the performance of dif-
ferent satellite observations to delineate flood extent over the studied area.

Significant uncertainty in the hydrological modeling of the White Nile River basin was
reported in previous studies; however, the hydrological modeling reveals reasonable per-
formance over the Blue Nile basin (BNB). The White Nile Basin is considered to be one
of the most complicated and diverse hydrologic settings on earth according to (Block and
Rajagopalan 2009). Therefore, the model complexity is due to its significant spatial varia-
tions, the rareness of data availability, dysconnectivity, and considerable losses in the
swamps regions. As a result, there are limited comprehensive hydrological studies over
the White Nile River basin. On the contrary, numerous hydrological modeling studies
have been successfully conducted over the BNB, (e.g. (Abd-El Moneim et al. 2019;
Eldardiry and Hossain 2019; Abdelmoneim et al. 2020; Eldardiry and Hossain 2021;
Abdelmoneim et al. 2022)). To address this issue, the RRI model is chosen for the hydro-
logic simulation because it is a 2D distributed model distinguished by simulating the dis-
charge and the flood inundation, which might be the central issue of simulation
compared with the other hydrologic model.

The main goal of this study is to combine a multi-sensor approach and rainfall-runoff-
inundation modeling to map flood inundation extent over the Nile River basin (NRB) in
Sudan. Additionally, we estimate and assess the damages caused in Sudan due to the 2020
extreme flood event. The paper is organized into five sections based on the RRI model,
which is applied over the BNB and White Nile basin to achieve this goal. Then, we intro-
duced the study area in section 2. Data sources and methods are summarized in section
3. Section 4 presents the results of the RRI model simulation and MSS approach.
Eventually, section 5 displays the conclusions of this research.

2. Study area: Sudan

Sudan is one of the downstream countries of the NRB, which is located in the northeast-
ern part of Africa. Its capital is named Khartoum state, located in the heart of Sudan and
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covered around 21000 km2 (approximately 0.01% of the entire area of Sudan), see Figure
1. Despite its smallest size, Khartoum is considered the most popular state among the
remaining Sudanese states, with a total population ranging from 6 to 7 million people.
The Blue Nile River and the White Nile River meet together in Khartoum, forming the
main Nile River. Such location is one of the main reasons that makes Khartoum state vul-
nerable to fluvial of recurrent flooding (Basheer 2021).

Additionally, its flat topography plays a vital role in the damage caused and adds to its
humble infrastructure. In recent decades, it has been facing several extreme flooding
events that consequently had a detrimental effect on its buildings and lands and its popu-
lation lives. For example, many losses caused by the flood event of 2013, which reached
499980 people were affected, happened in Khartoum state (UNOCHA (United Nations
Office for the Coordination of Humanitarian Affairs) 2013). Moreover, it witnessed a sig-
nificant impact due to the flood event of 2019, affecting around 32060 people. Eventually,
the recent devastating flood event of 2020 happened in Sudan, which had acute damage
to the constructions, infrastructures, and people’s lives, particularly in Khartoum state.
Figure 1(a) illustrates the losses resulting from the recent flood event of 2020. The RRI
model was employed over the two main subbasins of the NRB to assess the damages
caused by the extreme flood event over the Khartoum and other severely affected states.
Hence, the BNB and the White basin are two main subbasins in the NRB, as shown in
Figure 1(b).

3. Data and methods

Figure 2 represents the flow chart of the methodological approach that encompasses three
steps. First, flood inundation maps are produced using satellite observations; the second
one is for the description and the process of the RRI model, and then the simulated
results of the RRI model were calibrated and validated with the observed streamflow.
Therefore, the last section represents several statistical indices that were used in this study

Figure 1. (a) the location of the two subbasins (the BNB and the White Nile basin) of the NRB and the streamflow
stations (b) the location of Sudan and the damage and losses of their states caused by the flood event of 2020 (modi-
fied from (UNOCHA (United Nations Office for the Coordination of Humanitarian Affairs) 2020)).
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for the evaluation of the model performance. On the other hand, the simulated flood
inundation maps of the RRI model were also compared with the estimated maps from the
satellite images, as displayed in Figure 2. These previous steps are described in detail in
the following subsections.

3.1. Flood inundation mapping based on satellite images

In the current study, multi-satellite images are used to predict the extreme flood inunda-
tion event of 2020. Moreover, these sensors include Sentinel-1, Sentinel-2, MODIS, and
Landsat-8, as displayed in Table 1. The satellite observations are retrieved and processed
through the Google Earth Engine (GEE) platform (https://earthengine.google.org/), as
shown in Figure 2. The GEE is a cloud computing platform, which provides a free geo-
spatial dataset from several agencies with a high-performance computing capability (Patel
et al. 2015; Gorelick et al. 2017; Zurqani et al. 2018; Zhou et al. 2019). The flood inunda-
tion extents are estimated by classifying satellite images using the normalized difference
water index (NDWI), as displayed in Figure 2. Such classification of satellite images was
driven based on the normalized difference water index (NDWI) through the difference
between the green and near-infrared wavelength values. However, such satellite images
used the modified normalized difference water index (MNDWI), which outperforms the

Figure 2. flow chart represents the Methodology steps.
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results of NDWI in detection water. (Xu 2006) also emphasizes that the MNDWI advan-
tage of suppressing the response of both vegetation and built-up areas leads to enhanced
water detection for these areas. The NDWI and MNDWI were calculated using the fol-
lowing equations (McFEETERS 1996; Xu 2006):

NDWI ¼ GreenBand � NIRbandð Þ
ðGreenBand þ NIRbandÞ (1)

MNDWI ¼ GreenBand �MIRbandð Þ
ðGreenBand þMIRbandÞ (2)

3.2. RRI model

The RRI model, which the International Centre developed for Water Hazard and Risk
Management (ICHARM), Japan, is a 2D distributed hydrologic model that can simulate
the rainfall-runoff and flood inundation simultaneously (Sayama et al. 2012). The RRI
model’s source codes were developed based on the Fortran 90 computer language. One of
its advantages is that the model has been successfully employed to simulate flood inunda-
tion in numerous large-scale basins in different regions all over the world (e.g. (Shrestha
et al. 2016; Perera et al. 2017; Tam et al. 2019; Try et al. 2020)). Such remote sensing data
are firstly collected, including, digital elevation model (DEM), precipitation data
(CHIRPS), and landcover data (GLCC) to run the model, as shown in Figure 2. A DEM
and the stream network are used as input into the RRI model. The DEM cells serve as a
floodplain.

Meanwhile, the stream network is employed to construct the river channel. The model
assumes that the river channel is located in the same grid cell as the slope at the stream
network cell. The stream is discretized as a single line along its centerline of the overlying
slope grid cell. The 2D diffusive wave model is used to calculate the flow across the slope
grid cells, while the 1D diffusive wave model is used to compute the flow in the river
channel. The RRI model additionally simulates lateral subsurface flow, vertical infiltration
flow, and surface flow, which better represents the rainfall-runoff-inundation processes.
The lateral subsurface flow, typically more important in mountainous regions, is treated
in terms of the discharge-hydraulic gradient relationship, which considers both saturated
subsurface and surface flows. Otherwise, the Green-Ampt model is used to estimate the
vertical infiltration flow. The flow interaction between the river channel and slope is esti-
mated based on different overflowing formulae, depending on water level and levee-height
conditions. The RRI model provides the output of river discharge, river water level, inun-
dation area, and depth simultaneously, see Figure 2 (Try et al. 2020).

3.3. Evaluation of the performance

Three continuous statistic metrics are commonly used [e.g. (Yoshimoto and Amarnath
2017; Nastiti et al. 2018; Try et al. 2020)] to evaluate the performance of the RRI model,
including a Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), and percent
bias (BIAS). The Nash Sutcliffe efficiency (NSE) was first used to assess the statistical
goodness of fit of simulated flows (Abdelmoneim et al. 2022). The NSE scale runs from
-1 to 1, with higher numbers suggesting greater agreement (Legates and McCabe, 1999).
If NSE is less than zero, the model has no ability in predicting the measured (Lakew et al.
2017). The coefficient of determination (R2) and percent bias (BIAS) are also used to
determine the agreement of simulation outputs versus the measured. Moreover, BIAS is
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used to investigate the tendency of under- or overestimation of simulated flow (Gilewski
and Nawalany 2018). These indicators are calculated as follows:

NSE ¼ 1�
Pn

i¼1 Qobs � Qsimð Þ2
Pn

i¼1 Qobs � Qsim
0ð Þ2 (4)

R2 ¼
Pn

i¼1 Qobs � Qobs
0ð Þ Qsim � Qsim

0ð Þ2
Pn

i¼1 Qobs � Qobs
0ð Þ2 Qsim � Qsim

0ð Þ2 (5)

BIAS ¼
Pn

i¼1 Qsim � Qobsð Þ
Pn

i¼1Qobs
� 100% (6)

Where Qobs and Qsim are the observed data and simulated results, respectively. Qobs’

and Qsim’ represent their average over the simulation period. The best performance of the
four metrics is attained when R2 ¼ 1, BIAS ¼ 0%, and NSE ¼ 1. Also, it is worth to
mention the value of BIAS is deemed unsatisfactory if it is larger than 20 percent
(Gilewski 2021).

Additionally, three categorical statistics metrics are frequently used based on the 2� 2
contingency table to assess the accuracy of sensors in the detection of flood inundation
extent compared with the outputs of RRI model rain. These metrics are included; prob-
ability of detection (POD), false-alarm rate (FAR), and critical success index (CSI). POD
is used to determine whether flood inundation occurrences are detected correctly. FAR
displays that sensors detections were wrongly recorded. In addition, CSI is a grasp indica-
tor that measures the sensors prediction potentiality.

POD ¼ H
HþM

(7)

FAR ¼ F
Hþ F

(8)

CSI ¼ H
HþMþ F

(9)

Where H: is the measured in-situ data properly detected (hits), M: is the measured in-
situ data failed to detect (misses) as well as F: is the PESPs detected rain even though not
observed. The optimum POD, FAR, and CSI values are 1, 0, and 1, respectively.

4. Results and discussion

4.1. The RRI model simulation

The hydrological model (RRI) is individually applied over the BNB and the White Nile
basin to assess the model’s performance. CHIRPS product is used as alternative rainfall
input to cope with the lack of observed rainfall according to its good performance in the
Eastern Nile basin (ENB) is highlighted in (Abdelmoneim et al. 2020) ’s study. The simu-
lated streamflow forced CHIRPS product was calibrated and validated at the Khartoum
station (outlet of the basin) in the BNB daily and monthly timescales. However, the
Malakal station in the White basin was only simulated at a monthly time step according
to the data available. Therefore, this hydrologic simulation was performed using 1998–
2002 and 2003–2006 for the calibration and validation periods, respectively.

GEOCARTO INTERNATIONAL 9



Figure 3 shows the comparison between the simulated results and the observed dis-
charge data at the Khartoum station from 1998 to 2006. Table 2 summarizes the statistical
indices of the evaluation performance of the model for both calibration and validation
periods at the Khartoum and Malakal stations. As for the Khartoum station, the simulated
results reveal a good agreement against the observed discharge data for both timescales.
The simulated daily result forced by CHIRPs is reasonable against the monitored dis-
charge at both calibration and validation periods, as displayed in the NSE value of 0.72
and R2 value of 0.85 (see Table 2). The significant improvement in the model

Figure 3. The hydrograph of simulated results and the observed discharge (a) Khartoum station (daily time scale) (b)
Khartoum station (monthly time scale) (c) Malakal station (monthly time scale).
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performance in the monthly timescales is also noteworthy, as reflected in NSE and R2 val-
ues of 0.84, 0.80, and 0.92, 0.91, respectively, for calibration and validation periods.

As for the White Nile river basin, the RRI model fails to capture the hydrograph well
by showing a significant underestimation against the measured discharge (Figure not
shown in the study). However, it can capture well the pattern of the hydrograph. This
explanation of this limitation might be to these reasons. Firstly, the disconnected extensive
area of swamps that represent three regions (Bahr el Jebel, Bahr el Ghazal, and Sobat)
plays a vital role in the massive amount of river flow, reaching up to 50% of the river
flow. Consequently, the hydrological models couldn’t consider this immense loss, resulting
in the significant uncertainty of simulated results. Secondly, the limitation of data is a
challenge either due to its accessibility or availability via riparian countries. Hence, the
simulated results were adjusted based on the observed data to improve and overcome
the remaining restrictions. Figure 3(c) shows the simulated results compared with the
observed discharge. The results reveal a relatively good agreement in both calibration and
validation periods, as reflected in NSE and R2 values greater than 0.5 (see Table 2).
According to (Moriasi et al. 2007), results are still satisfactory that appear NSE value
greater than 0.5 referring to the guidelines of watershed modeling evaluation.

4.2. Flood inundation extent

Four sensors were employed over this region to assess the acute damage that happened in
Khartoum, including MODIS, Landsat 8, Sentinel-1, and Sentinel-2. The images of the
satellite were estimated before and after the flood occurrence. The difference between
both results shows the flood extent. Figure 4 illustrates the mapping of the flood inunda-
tion extent for each sensor over the Khartoum state, particularly over the junction of the
BNB and the White Nile river. Graphically, the four sensors appear similar performance
with a slight difference. However, each sensor’s estimated flood inundation areas vary
from 200 km2 to 500 km2, as shown in Figure 5. This variation might be due to the uncer-
tainties of sensors. It is also worth mentioning the flood inundation extent at the White
Nile river is greater than at the BNB. (Gelete et al. 2020) highlighted that flooding proc-
esses are influenced by climatic factors and non-climatic factors, including soil type, slope,
and antecedent soil moisture. This implies that the damage at Khartoum state might be
due to the soil type and moisture added to its humble infrastructure.

Figure 6 illustrates the mapping of flood inundation extent of two sensors compared
with the RRI outputs during the three months of the flood event (July to September) over
the most affected states. Four states, including Sennar, White Nile, Gedaref, and Elgezira,
are affected after Khartoum. The spatial distribution of flood inundation increases grad-
ually from July until the maximum in September. Three categorical statistical indices
(POD, FAR, and CSI) that are frequently applied to assess the performance of each sensor
are displayed in Figure 7. Despite the reasonable values of POD (ranging from 0.5 to
0.82) shown for Sentinel-2; however, it appears high values of FAR and humble values of
CSI. Also, a significant overestimation is denoted for months by comparing the results of

Table 2. Statistical indices for the evaluation of the RRI model’s performance.

Stations Time steps

Calibration Validation

NSE R2 BIAS NSE R2 BIAS

Khartoum station Daily 0.72 0.85 �0.03 0.72 0.85 0.07
Monthly 0.84 0.92 �0.07 0.80 0.91 16.44

Malakal station Monthly 0.69 0.56 �0.03 0.51 0.78 0.04
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Sentienl-2 and the RRI outputs. The implication of these uncertainties might be due to
the huge areas of wetland in the White Nile River which affect the prediction of the satel-
lite. Overall, it is noticed that the results of Sentinel-2 outperform the results of MODIS,
as shown in Figures 6 and 7. Additionally, the flood inundation extent is estimated at the
two maximum events, as displayed in Figure 8. Overall, the estimated flood inundation
extents based on MODIS and Sentinel-2 furnishes a good agreement compared with the
RRI outputs over all states, as reflected in Figure 8. However, both sensors reveal such

Figure 5. Estimated flood extent by each sensor.

Figure 4. The flood inundation extends maps using four sensors over Khartoum state (a) MODIS (b) Sentinel-1 c)
Sentinel-2 d) Landsat 8.
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discrepancies at different states. As for illustration, the estimated flood inundation area
based on Sentinel-2 shows less performance with a significant underestimation at Gedaref
state similarly to MODIS estimated at White Nile state. On the contrary, the Sentinel-2
estimate shows a considerable overestimation at White River state which might be due to
the uncertainties of the sensor.

Both sensors reproduce well compared with the RRI outputs with insignificant differ-
ences over Elgazira and white states. It also noticed that the Sennar state has the most

Figure 7. Categorical Statistical indicators used to evaluate the performance of sensors in detection flood inundation.

Figure 6. Mapping of flood inundation extent over the most affected states for two sensors (MODIS, Sentinel-2) and
RRI results.
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extensive flood inundation area compared with others implying it also suffered severe
damage (see Figures 6 and 8). These findings correspond with the information of the
report of (FAO 2020).

5. Conclusions

In this study, the characteristics of a major flood event in 2020 in Sudan were investigated
by applying the rainfall runoff-inundation (RRI) model. The RRI model simulates the
streamflow and flood inundation based on remote sensing data over the BNB and the
White Nile basin. Also, mapping of flood inundation was estimated over the most affected
states based on the multi-sensors approach to understanding the dynamics of flooding
events in Sudan and, in particular, Khartoum State. The main findings can be summar-
ized as follows:

� The RRI model shows a good performance in the simulation of the streamflow over
the BNB. However, it resulted in lower performance over the White Nile basin.

� Based on the flood inundation maps estimated from multi-sensors, the main reason
for damage in Khartoum state is the riverine flood of both the BNB and the White
Nile.

Figure 8. Flood inundation area of the two extreme flood events as estimated by two sensors and the RRI model
over different states.
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� The MODIS and Sentinel-2 satellite observations have relatively good performance
compared with the RRI’s inundation maps in major states. However, they appear a sig-
nificant discrepancy in such states.

The lack of data is a common issue that is typically facing researchers in the trans-
boundary basins, particularly in developed nations. These findings disclose that the rain-
fall-runoff modeling and multi-sensors approach applied in this study can overcome the
challenges of accessing observed data. However, further validation for the flood inunda-
tion extent based on measured data is also required in future research to obtain more pre-
cise results. This adds to preventing the uncertainties of satellite images and the RRI
outputs resulting from the remote sensing data used, such as precipitation, land use, soil
type, and evapotranspiration. Moreover, further research should be conducted to predict
and assess future extreme floods considering the impact of climate change. Additionally,
the consideration of the proposed and existing reservoirs construction and development
projects in upper NRB countries is the key driver to altering the amount and variability
of the Nile River flow, particularly the GERD. Although the GERD will reduce the river-
ine flood hazards, according to (Basheer 2021)’ study; however, it will definitely affect
negatively the water share of the downstream countries (Egypt and Sudan). Also, it is
worth to mention the livelihoods of thousands of farmers in Sudan will be affected due to
the loss of recession agriculture caused by the regular flow resulting from the construction
of the GERD (Basheer 2021). Undoubtedly, floods, despite the damage and destruction
that predominantly cause, provide environmental and economic benefits (Basheer 2021).

Overall, the presented framework that integrates freely available remote sensing obser-
vations with open-source flood inundation models can be a feasible tool and a valuable
guide for decision-makers by indicating early flood warnings, especially in scarce data
regions, which are either limited gauged or ungauged regions, like Sudan.
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