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RESEARCH ARTICLE

The effect of optimism bias and governmental action on
siltation management within Japanese reservoirs surveyed
via artificial neural network
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aInstitute for Environmental Systems Research, Osnabrück University, Osnabrück, Germany; bWater
Resources Research Center, Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan;
cDepartment of Civil and Environmental Engineering, Faculty of Engineering, Miyazaki University, Miyazaki,
Japan

ABSTRACT
Reservoirs are installed as long-term assets to guarantee water and
energy security for decades, if not centuries. However, the effect of
siltation undermines reservoirs’ sustainability because it signifi-
cantly reduces the reservoirs’ original capacity. The present paper
attempts to evaluate the global reservoir siltation problem with the
optimism bias theorem introduced by Kahneman and Tversky and
applied to infrastructural mega-projects by Flyvbjerg and Ansar
using artificial neural networks (ANNs) algorithms for large
Japanese reservoirs. Japan possesses suitable long-term data and
a legal directive concerning the sediment capacity siltation dura-
tion, which serves as a valid guide to check whether, over the past
100 years, engineers, planners and managers were capable of jud-
ging the sediment input correctly. Various ANN models were estab-
lished to emulate Japanese reservoir siltation behavior. The
networks demonstrate that reservoirs in Japan suffer from opti-
mism bias. In contrast to the law, the dead storage volume of an
average dam is supposed to reach capacity after 52 years. This
finding joins the overall observation that mega-projects generally
and globally suffer from optimism bias. The emulations were sub-
sequently screened for a presumed influence of governance
actions, namely, indicating plus monitoring and the change in the
market competition situation. While reservoir siltation appears to
continue regardless of the level of competition in public procure-
ment, monitoring directives appear to have a considerable impact
on improved siltation management, which demonstrates that dedi-
cated governance action can significantly strengthen the sustain-
able behavior of key infrastructure elements such as reservoirs.
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1. Introduction

Recently, hydropower has experienced a tremendous global construction boom. Fueled
by the desire to create more active storage (Annandale, 2013), the number of installed
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dams is expected to more than double up to 2030 compared to 2010 (Zarfl, Lumsdon,
Berlekamp, Tydecks, & Tockner, 2015). One of the reasons for this boom is siltation, which
has led the gross reservoir volume per capita (Annandale, 2013) and the gross reservoir
volume (Kantoush & Sumi, 2010) (as seen in Figure 1) shrink to 1970s levels despite the
ever-growing number of reservoirs. This situation is a giant setback for sustainable long-
term renewable energy generation and water supply security.

Notwithstanding manifold siltation predictions and elaborate simulation models
(Ghimire & DeVantier, 2016; Hao, Qiu, & Li, 2017; Omer, Ali, Roelvink, Paron, & Crosato,
2015; Simoes & Yang, 2006; Zeleke, Moussa, & El-Manadely, 2013), the global develop-
ment insinuates that planners, operators and practitioners struggle to predict both the
sediment inflow and yield reservoirs correctly. Consequently, the implementation of
suitable management strategies for siltation remains a challenge (de Vente et al., 2013;
Kantoush & Sumi, 2017; Schleiss, Franca, Juez, & De Cesare, 2016; Yang, 2013), which
prevails regardless of the respective environment, climate, society and technology level
Annandale (2013); Basson (2009); Schleiss, De Cesare, and Althaus (2010). It appears that
planners, operators, managers and constructors are overly optimistic, i.e. they are biased
by the so-called optimism bias (Schleiss et al., 2016).

Said optimism allows responsible persons to underestimate risks while overestimating
their own capacities. By doing so, they neglect the given data and experience of already
installed projects of the same or similar kind (Ansar, Flyvbjerg, Budzier, & Lunn, 2014;
Flyvbjerg, 2006, 2016). This theory was initially developed by Tversky and the Nobel prize-
winning Kahneman (Kahneman & Tversky, 1979).

Siltation data are, however, globally scarce (Schleiss et al., 2016). Few authorities
monitor sediment in a regular, overarching manner, except in Japan (Auel, Kantoush, &
Sumi, 2016; Kondolf et al., 2014), which makes it an ideal country for data-driven experi-
ence analysis.

Because there is increasing pressure on reservoirs due to (unforeseen) siltation, retro-
spective amendment methods play a key role in sediment management (Annandale,
2013; Kantoush & Sumi, 2017; Schleiss et al., 2016). Said methods are manifold and
often technical in nature; however, they are not generally applied (Kantoush & Sumi,
2017; Morris & Fan, 1998).

Figure 1. Assumed global (and Swiss) siltation development according to Kantoush and Sumi (2010).
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On the other hand, governance measures exist. Similar to technological solutions, their
use case application is also limited (Pahl-Wostl, 2015), which is indeed startling, as it is
observed that governance measures can have a high impact within the water-energy-
food nexus (WEF nexus) (Pahl-Wostl, 2015). Reservoirs, as a junction between energy
production and water supply (for, e.g., crop production), belong to the WEF nexus. As one
of its aims, this study seeks to find evidence that substantiates the effect of governance on
sediment management.

Siltation is a non-linear time series process (Annandale, 2013). An emergent tool for
non-linear data analysis and non-linear data emulation are artificial neural networks
(ANNs), whose advantages include comparatively rapid applicability and a vast use case
flexibility (Gamboa, 2017). Thus, they are this study’s method of choice to detect evidence
of optimism bias and governance effects.

The present paper seeks to identify evidence that substantiates the presumption of
optimism bias behavior in sediment management and planning.

To verify whether optimism bias is indeed persistent in siltation prognosis and reservoir
management, the outside view introduced by Kahneman and Tversky and data analysis
are key features (Ansar et al., 2014; Kahneman & Tversky, 1979).

The subsequent methodologies will produce general results, i.e. this analysis does not
account for every single dam in a highly specific manner – it is acknowledged that there are
huge individual differences. Nevertheless, if the Japanese reservoirs were regarded as an
entity, the produced results will give worthwhile insights about large scale reservoir
sustainability.

2. Methodology

2.1. Selection of an optimism bias reference

Optimism bias detection requires a reference class (Ansar et al., 2014; Flyvbjerg, 2006;
Kahneman, 2011) to establish a needed outside view(Kahneman, 2011; Kahneman &
Tversky, 1979). More than often, (large scale) projects were established and carried out
by the project team itself or by people related to the project judging on project data. This
is the so-called inside view(Kahneman & Tversky, 1979). It is often quite sophisticated and
accounts for the own resources, capacities and skills. However, what is unaccounted for
are the so-called unknown unknowns, which are impossible to perceive if one resides
inside of a system (Kahneman, 2011).

In doing so, large scale infrastructure projects are more than often affected by cost
overshoot or by a project completion way beyond the initial schedule (Ansar et al., 2014;
Flyvbjerg, 2016, 2006). An outside view is thus needed. It is provided by already com-
pleted projects of a similar class, i.e. a reference class is needed (Kahneman, 2011;
Kahneman & Tversky, 1979). The reference class serves as a great indication, where
projects are going to head in the future.

Translated to the case of Japanese reservoir siltation, the projects, i.e. reservoirs, that
have already been installed and their sedimentation data are the very key to create
a reference class. They are supposed to indicate quite neatly the overall siltation state
of reservoirs after a certain period according to Flyvbjerg (2016); Kahneman and Tversky

70 T. LANDWEHR ET AL.



(1979). To judge whether the outside view and the inside view diverge (i.e. whether an
optimism bias exists), a siltation planning marker is needed.

Reservoirs have an installed siltation capacity, which is often congruent with its Dead
Storage Volume (Kantoush & Sumi, 2017). This volume lies below the reservoir outlet and
cannot be actively used for water management. However, it serves as siltation buffer to
guarantee the full usage of active storage over a planned period of time. An insufficient
siltation capacity is seen as a clear threat to operation security and a long reservoir lifetime
(Kantoush & Sumi, 2017; Rakhmatullaev, 2010).

In this study, lifetime is defined as the termination of the initially intended operation
purpose due to siltation; it does not necessarily equal a 100% siltated reservoir. By no
means lifetime is equal to the ratio of siltation capacity to the mean annual sediment
inflow. The siltation capacity situation is, however, a very good proxy to judge whether
the intended operation lifetime or longevity will be kept in the future.

The time of operation for reservoirs must be estimated, designed and planned by
managers, practitioners and engineers. A divergence from these plans is a clear indication
of siltation underestimation. If siltation underestimation is systemic for reservoirs, it
becomes a general bias, namely, an optimism bias.

For most of its reservoirs, Japan introduced (Shouwa 32 -昭和 32 年) a directive in 1957
that demands one hundred years of minimum durability for the siltation capacity (Kasen
Hobou Gijutsu Kihon – 河川破防技術基準 – Norm for relevant techniques against destruc-
tive river basin management, NTDM), according to Okano, Takanagi, Fujii, and Ando (2004).

The NTDM norm is the marker of this research. A general divergence of siltation in the
sediment capacity volume in Japanese reservoirs from the legal siltation goal is seen as an
indication of optimism bias in sediment prognosis and management.

2.2. Base data

The base data originated in 2015 (Heisei 27 –平成27年) and were provided by the Ministry
of Land, Infrastructure, Transport and Tourism (MLIT) and the Public Works Research
Institute (PWRI). In total, 1006 dams are included (as shown in Figure 8). Dams of different
purposes, types and sizes (small: <1 m m3, medium: >1 m m3, large: >10 m m3; very large:
>100 m m3 of total storage volume [this definition is made for Japan and not interna-
tionally applicable]) are incorporated. Hence, the data reflect the general character of
Japan’s reservoir landscape. The data comprise the siltated volume, inactive storage
capacity, and active storage capacity along with general data such as inauguration or
river basin affiliation. Of these, 141 dam sets were not directly usable because they were
incomplete. Stochastic measures were undertaken to utilize them (Figure 2).

As the data did not separate active and dead storage siltation, the assumption was
made that the whole siltation occurred in the reservoirs’ dead storage volume. It was
regularly observed, though, that active storage siltation initiated far earlier and fiercer
than scheduled, i.e. before the complete dead storage volume was exhausted (Reza
Rahmanian & Banihashemi, 2012; Basson, 1999). Consequently, this research represents
a non-realistic optimal state from the reservoir management perspective. The actual
reduction of active storage must be considered to be fiercer than suggested in this
study (Kantoush & Sumi, 2017).
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If arranged by the inauguration year, the base data represent a time series that allows
us to draw conclusions about general siltation management performance in Japan. The
terms general or average refer in this context to siltation performance behaviour that is to
be derived from the Japan overarching conglomerated data by the ANNs. The emulations
shall thus produce a siltation development archetype that is typical for Japan based on
the available data (approach).

To do so, the data were transformed for ANN purposes and streamlined to the desired
key information: 1. The year of reservoir inauguration and 2. the reported lake siltation
versus the dead storage volume.

2.3. ANNs

For the given data, a non-linear relation is presumed. ANNs are considered a good tool for
the analysis, pattern detection and data emulation for this type of data behavior (Gamboa,
2017; Michelucci, 2018; Schmidhuber, 2014). First, simple network attempts were already
conceived and approached throughout the 1960s, 1970s and 1980s. A breakthrough of
the ANN methodology was reached in the recent decade due to a significant increase in
CPU and GPU computation power (Chellapilla, Puri, & Simard, 2006), which allowed ANNs
to grow in size and solve complex problems. Due to the amount of computed neurons

Figure 2. Flowchart of the methodological process.
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and the necessary CPU/GPU power, the ANN method is described as a brute force
approach (Perez, 2017) or reinforcement learning (Zhang, Vinyals, Munos, & Bengio, 2018).

A well-trained ANN is capable of emulating, forecasting or even creating realistic
results based on limited or incomplete non-linear data (Michelucci, 2018; Schmidhuber,
2014). This situation is given for the Japanese (or every other country’s) siltation case.

ANNs are thus a viable tool to emulate a generalized contemporary state of siltation for
reservoirs of certain ages in Japan. The ANNmass data analysis and will thus give feedback
and insights on the Japan wide overall state of reservoir siltation and the presumed
deviations from the actually planned siltation state. This allows to draw conclusions on
large scale large infrastructure management of a country and hence the (not-)perpetua-
tion of sustainability according to the World Commission on Environment and
Development (2018) definition.

ANNs consist of different layers of weighting entities, so-called neurons. Their objective is
to emulate a variety of known relations that are presented to them based on training data.
The neuron entities iteratively receive and process the data within different kinds of internal
connections whilst perpetually updating their weights. Performance is checked on
a separate validation test set. The neurons are designed to reduce the asserted deviation
between the known training data relation and the results of the own emulation of the prior
iteration by a certain, determined degree (Michelucci, 2018; Schmidhuber, 2014).

As the relation of training and validation data is known, the emulation accuracy on
test and validation data is used as a guidance on network performance. In
a concluding network performance check, the ANNs capability to generalize on new
data is surveyed by an iteration on the hitherto unseen test data (Michelucci, 2018;
Schmidhuber, 2014).

To suit ANN demands, the data need to be randomly split into a training part and
a testing part. In this study, this split is done by k-fold cross-validation. The technique
separates the complete data into k entities, out of which k minus one form the training
part. The left k-sized fraction forms the test set used for network validation. In the next
iteration, the network is trained and tested on another k-set. This methodology equals out
extremes caused by arbitrary chosen splits. Moreover, it guarantees the usage of the full
test set. It is also used for optimization purposes (s. next chapter) (Jiang & Chen, 2016).

ANNs face several issues that reduce their performance or contort results. Among them
are overfitting (Allamy, 2014; Zhang et al., 2018) and underfitting (Allamy, 2014), data
scarcity, the need for normalization, data imbalance and outlier influence (Khamis, Ismail,
Khalid, & Tarmizi Mohammed, 2005). These issues were addressed using methods such as
dropout (Park & Kwak, 2017), augmentation (jitter (pure Gaussian noise) and warp
(Gaussian noise on Bezier-Curves))(Le Guennec, Malinowski, & Tavenard, 2016; Um et al.,
2017; Velasco, Garnica, Lanchares, Botella, & Ignacio Hidalgo, 2018; Xiao & Xu, 2012),
synthetic minority oversampling technique (SMOTE) (Fernández, García, Herrera, &
Chawla, 2018), interquartile range (IQR) scaling (Mizera et al., 2004) and median absolute
deviation (MAD) (Gorard, 2013) based Gaussian noise data completion. The complete
process is shown in Figure 2. The jitter and warp-based augmentations were carried out
separately and displayed discretely in the results. Warp is used to produce better results,
as the enhancement follows a more continuous process.
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2.4. Selection of network hyperparameters

Several ANN types are applicable for time series emulation, including support vector
machines for regressions (SVR) (Nisbet, Miner, & Yale, 2017), feed forward networks (FFNN)
or multilayer perceptrons(MLP) (Michelucci, 2018), and long short term memory recurrent
ANNs (RNN-LSTM) (Michelucci, 2018). MLPs and FFNNs resemble each other quite lot.
Thus, their emulations are expected to be similar.

SVRs and MLPs were applied via SKlearn libraries (Pedregosa et al., 2011), FFNNs and
RNN-LSTMs were constructed using TensorFlow and Keras libraries (Abadi et al., 2015).

ANNs succumb to hyperparameters that regulate them. These hyperparameters have
tremendous influence on their performance (Michelucci, 2018; Nisbet et al., 2017). To
select the optimal operation environment, the best-performing hyperparameters were
chosen using an iterative k-fold cross-validation grid search process (Jiang & Chen, 2016).
The optimization guidance was formed using R2, MAD and mean squared error (MSE) as
metrics. Thus, MAD was the prime criterion because it is comparatively robust to outlier
distortion in a non-linear environment (Gorard, 2013). The other metrics were used if they
improved by 15% after a cross-validation iteration. The optimized values were chosen as
hyperparameters, which can be seen in Table 1. The emulations themselves were also
carried out in a k-fold cross-validated manner. Overall, eight emulations were produced.

2.5. Network metrics

Over- and underfitting performance were originally considered as a measure to select the
best-performing two ANN types, since over- and underfitted ANNs are not capable to
generalize appropriately on new data. Such networks either emulate the testing data in an
overly exact ragged fashion (overfitting) or fail to react to each type of new data (under-
fitting) (Allamy, 2014; Zhang et al., 2018). The selection process was planned to be carried
out via the analysis of R2 performance. Due to reasons stated in the chapter “Metrics’
Validity” in the Discussion, no best-performing network was selected and all four are
displayed as main results.

Their evaluation is carried out via MSE, R2 and MAD. The focus lies on the latter, as it is
more robust against the influence of outliers (Gorard, 2013), which is important

Table 1. Overview of k-fold cross-validated grid-searched hyperparameters. Please refer to the text for
more details on abbreviations, etc.

Network Specific Optimized Setups

Hyperparameter SVR MLP FFNN RNN-LSTM

Learning Rate - 0.0006 0.015 0.004
Batch Size - 128 100 256
Optimizer - Adam Nadam Adam
Loss Function - - mae logcosh
Activation - tanh relu tanh
Epochs - automatic 15 12
Dropout - - 10% per layer 50% per layer
Hidden layer setup - 500/150/70/25/1 500/150/200/50/1 250/120/10/1
k-fold emulation 4 4 8 3
C 1.20E+02 - - -
Gamma 1 - - -
Epsilon 0.004
Kernel rbf - - -
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considering the generalization approach of the study. In nonlinear relations, however, the
metrics have a limited significance. This is discussed later in “Metrics’ Validity”.

Furthermore, a mere linear regression was computed from the original data to test
whether major deviations between the elaborated ANN approach and the linear regres-
sion exists. The linear regression thus serves as an indication of whether the ANN
approach is actually worthwhile.

2.6. Identification of an optimism bias

The networks were evaluated regarding optimism bias in a way similar to prior research
by Ansar et al. (2014). The Wilcoxon-Mann-Whitney Test (WMWT) was used to identify
whether the optimism bias hypothesis should be rejected (Corder and Foreman, 2014).

2.7. Identification of governance impact

One of the aims of this research is to substantiate a presumed sustainable effect of
governance on sediment management.

The research focuses on two elements: 1. legal and administrative directives and 2. the
economic environment. For the prior, regulatory means for indication and monitoring
were chosen as prevalent. For the latter, the procurement competition situation was
selected.

A substantiation is assumed if an ANN-identified period of reduced siltation accumula-
tion coincides with periods of governance intervention in Japan. Those intervention
periods are to be identified.

2.7.1. Indication and monitoring
The implementation of the Kasen Hobou Gijutsu Kihon – 河川破防技術基準(Norm for
relevant techniques against destructive river basin management; NTDM) (Okano et al.,
2004) in 1957 (Shouwa 32 – 昭和32) was a major incident that changed the approach of
indication and monitoring for reservoirs within Japan. Another contribution of that epoch
is a revision of the NTDM. It enforces systematic monitoring and legal pressure and is
reported for the middle of the 1960s (Okano et al., 2004). The years around 1957 form
a period of special interest.

2.7.2. Competition
Following Flyvbjerg and Ansar, a non-competition situation in public procurement leads
to a higher observed optimism bias and thus to irregularities (such as inappropriately
managed siltation) in negative effects for mega-projects. Competition should be seen as
a contribution towards an aim-based project management (Ansar et al., 2014).

In Japan, several events were highly influenced by competition environment in public
procurement economics (Fujii, 2012). Prior to the second World War the Shimei Kyousou
(指名競争) was prevalent. Business collusion between the state as tenderee and its
contractor, the powerful Japanese Zaibatsu (財閥), was a daily occurrence. Competition-
induced pressure for performance increases was de facto non-existent (Fujii, 2012).

In 1947 competition was pushed by the Shiteki Dokusen no Kinshi oyobi Kousei Torihiki
Kakuho ni kan suru Houritsu (Dokusen Kinshi Hou) –私的独占の禁止及び公正取引確保に
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関する法律(独占禁止法), the so-called Antimonopoly Act. Due to a lack of control and
political unwillingness, however, the effect was limited (Kinoshita, Satou, Matsumoto,
Tanaka, & Tanno, 2008). The rather non-competitive state continued to be in effect for
public construction tendering, as the 1981-Shizuoka incident demonstrated. It evolved
around the ministry of construction and its then minister Saitou Shigeyoshi, who had to
step back after large scale bid-rigging was revealed to the Japanese public (Fujii, 2012;
Kinoshita et al., 2008). Kinoshita (2012) confirms that during this era the minority of
tenders were subject to real competition.

The situation changed in 1994 with the Koukyou Jigyou no Nyuusatsuãƒ»Keiyaku
Tedzuzuki no Kaiyen ni kan suru Koudou Keikaku – 公共事業の入札・契約手続の改善に

関する行動計画 (Public procurement: Plan for the improvement of contraction proce-
dures)., which was the most important step in the public procurement economy since
1900 (Kinoshita et al., 2008). The years around 1947 and 1994 are thus important time
period for improved competition. Among both events, 1994 had a higher influence.

3. Results

The produced emulations reveal a uniform picture. The siltation is fiercer than the design
demanded by law (Okano et al., 2004). The median years for a certain fraction of siltation
can be derived from Table 2. The divergence between some of the emulations is a matter
for the discussion part.

For 100% dead storage siltation the median of the eight simulations lays in the year
1964, i.e. reservoirs built in that year are generally expected to have lost their complete
dead storage volume. For 50% siltation, the median emulation expects the year 1985, i.e.,
dams constructed in that year are assumed to have lost half of their dead storage volume.
All emulations reach 150% siltation of dead storage, some far more.

Three ANN types show similar behavior with several distinguishable phases, which will
be described below. LSTM emulations present an excerpt with a rather continuous
siltation growth emulation.

In contrast, the scale of three ANN types is rather uniform, with MLP types being the
exception. MLP types project a considerable fierce emulation of siltation growth. The
entire range of emulations can be found in Figure 3. The variability that the generalized
ANNs deem likely is denoted by ragged parts and the boldness of strokes.

The metrics for most emulations show uniform patterns in Table 3. MLP emulation
metrics diverge from the rest, which corresponds to their different scale. LSTM metrics
also differ slightly from FFNNs and SVRs. The discussion will address the implications of
these metrics.

Table 2. Median siltation of dead storage emulations.
Jitter Warp

Dead Storage Siltation SVR FFNN LSTM MLP SVR FFNN LSTM MLP Median

50% 37 33 17 26 38 38 24 24 29.5
100% 54 52 48 41 53 51 51 38 51
150% 101 81 88 49 81 80 87 53 81
200% - - - 72 104 109 - 70 -
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From Figure 4 it is evident that most emulations differ significantly from a mere linear
regression. In fact, the linear regression indicates a far fiercer siltation rate for the
reservoirs than the ANN emulations. Only the MLP emulations range in the order of the
same increment.

The concordance (in shape and scale) of the emulations insinuates that a mere linear
regression cannot reflect the complex non-linear behavior of a long-time reservoir silta-
tion, i.e., that the ANN methodology is worthwhile.

Figure 3. Eight emulations based on four ANN types and two augmentation methodologies.

Table 3. Metrics of the eight emulations.
Jitter Warp

Metric SVR FFNN LSTM MLP SVR FFNN LSTM MLP

MAD 0.3912 0.3754 0.4136 0.6521 0.3793 0.3654 0.4023 0.6385
MSE 9.99 10.07 9.893 9.154 10.14 10.22 10.05 9.238
R2 0.0127 0.0074 0.0246 0.0965 0.0139 0.0099 0.0259 0.1011
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The subtraction of the NTDM from the network emulations reveals oversiltation
behavior, which is demonstrated by the equation below (OS = Oversiltation,
PS = Projected Dead Storage Siltation in %, DS = Dead Storage Siltation demanded by
the 1957 Directive in %).

OS ¼ PS� DS2015 (1)

Oversiltation is prevalent for all types of emulations, as shown by Figure 6. Based on the shape
characteristics, it can be sub-classified into five different phases whose names are based
roughly on historic or Japanese epochs. An exemplary breakdown can be consulted in
Figure 5. The enumeration is carried out from present to past from right to left on the graph.

(1) Heisei Antei –平成安定.Heisei Stability: Constant oversiltation, ranging around 20%
up to year 1980

(2) Shouwa Kakou – 昭和下降.Shouwa Drop: A drop of oversiltation towards the
Heisei-level, initiated from the end of the 1950s/beginning of the 1960s.

(3) Shouwa Antei – 昭和安定.Shouwa Stability: Rather constant level of over-siltation
from the mid-1940s onward that ranges approximately 60% for FFNN and SVR (and
LSTM) and 100% for MLP.

(4) Sekai Sensou Kakou –世界戦争下降. A drop of a very steep (MLP) or rather smooth
nature during the time of the second World War.

(5) Taishou Aimai – 大正曖昧. Taishou Ambiguity: Values of high ambiguity, roughly
around the Taishou time.

Figure 4. Warp augmented emulation in comparison to a linear regression.

Figure 5. The Jitter-augmented FFNN emulation and the identified periods of siltation behavior.
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Two periods reflect a time of significant oversiltation reduction, i.e. an im- provement of
siltation treatment and management. One coincides for all emulations of a characteristic
shape with one of the three periods of identified governance intervention: The NTDM
laws were established when the Shouwa Drop was triggered. as seen in Figure 6. It is an
indication of the contribution of governance to improved siltation management.

Because siltation of the general Japanese dam lies constantly beyond the 1957-
demanded NTDM range, the presumption is that planers and managers were not capable
of meeting its standards, including in recent projects, as Figure 6 demonstrates.

A comparison in Figure 7 with the siltation values of six coincidentally elected reser-
voirs that were recorded between 2000 and 2017 shows furthermore that a rough quite
a concordance in shape and behaviour with the Jitter augmented FFNN and thus with the
five identified phases. It is emphasized that the data of the six reservoirs (provided by the
PWRI and MLIT) were not included in the ANN base data, i.e. that it is unknown to the
ANN. This shows that the ANN have achieved quite a good generalization on Japanese

Figure 6. Degree of oversiltation in all emulations and coincidence with governance interventions
with a potential impact on siltation management performance.
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dam behaviour given that the selected dams originate from different regions, are different
size and inaugurated in different decades.

It is furthermore assumed that the reservoir projects would not have been permitted if
authorities, planners and managers were not convinced to meet the NTDM. Therefore,
systematic conduct of high optimism can be derived.

The WMWT supports this by assigning every ANN emulation statistical significance
with p-values close to zero and U-values far less than the critical U (e.g. Warp-augmented
FFNN: p = 2.39e-182 and U = 32774307 far less than the Ucrit= 57623970.173) when
compared to a distribution of values that meets the NTDM. The null hypothesis is
consequently rejected.

This means, the emulated values and values that meet the NTDM are not from the
same distribution and they indeed represent the outside view demanded by Kahneman
and Tversky (1979); Flyvbjerg (2016). As already demonstrated in Figure 6, the values are
way higher than NTDM values. Hence, emulated values derived from real data are not
expected to meet the NTDM. This happens – as the WMWT shows – in a statistically
significant and systematic manner. With regard to fullfilling the NTDM, it must be
assumed that generally both siltation was underestimated and the own skills overesti-
mated. This implies that siltation management suffers broadly from optimism bias.

4. Discussion

The ANN emulations differ in shape and range, which should be expected, as they are
influenced by different build-ups (Michelucci, 2018; Nisbet et al., 2017). Interestingly,
many similarities exist among the emulations. At some points, differences were noted
where they were not expected.

4.1. The divergence of MLPs and LSTMs

The difference in the scale of the MLP emulation towards the other network emulations is
striking. The shape, however, resembles that of SVRs and FFNNs. Originally, FFNNs and
MLPs were rather similar, as their internal structures are based on a very similar feed-
forward approach (Makrem, Imen, & Kaïs, 2016). The different results can most likely be

Figure 7. Comparison of observed and coincidentally selected dead storage siltation values with
emulated dead storage values.
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explained by two features: the Dropout (Park & Kwak, 2017) and the Loss (Li, Xu, Taylor,
Studer, & Goldstein, 2018), that were missing in the applied SKlearn architecture for MLPs.

The LSTM shape divergence has to be attributed to the completely different build-up
of LSTM-Neurons, which are designed to have a memory function (Michelucci, 2018).
LSTMs are thus more robust to short-run deviations compared to ANNs (Shah, Campbell, &
Zulkernine, 2018). However, it is not entirely clear why this phenomenon causes the
observable effect.

4.2. Metrics’ validity

As seen in Table 3, MLPs appear to outperform the other ANNs in terms of the MSE and
the R2 whilst being themselves on a rather mediocre level in absolute terms. However, the
significance of such metrics needs to be discussed.

First, it is important to emphasize that the comparability between them is partly limited
because the emulations succumb todifferently randomized k-fold splits of the samebase data.

Second, according to Spiess and Neumeyer (2010); Alexander, Tropha, and Winkler
(2015); Pontius, Thontteh, and Chen (2008) the validity of both R2 and RMSE is question-
able in non-linear environments. Achen (1990) argues that their whole significance is
rather limited. Nevertheless, they are used quite regularly (McKellar & Lu, 2003).

In this study, a non-linear ANN emulation, especially R2 is viewed under a completely
different angle, namely as an indication of overfitting. Under non-linear deep learning
circumstances, an optimum value for both R2 and RSME is not desirable, which would
mean an absolute fit and thus non-generalization, i.e., overfit. In contrast, low perfor-
mance indicates a complete no-fit and thus an underfit. Acceptable but imperfect R2 and
RMSE results are hence desirable. Because this approach is not entirely verified, no ANN
type was omitted during this study due to supposed overfitting likeliness.

Overall, the MAD is seen as a more valid indication of a good emulation fit. Although
the MAD basically resembles the MSE, the focus on the median reduces outlier influence.
Emulations that do not cover all outliers receive a better score, as reflected in Table 3; they
appear to be more generalized (Gorard, 2013) and thus of higher scientific value.

4.3. Impact of augmentation technique

Although the emulation results differ, a clear recommendation on which tech nique
produces better results cannot be drawn. Other than expected, Warp-augmented emula-
tions are neither clearly distinguishable nor bear significant advantages to Jitter-
augmented emulations. The demonstrated closeness of re-sults, however, points towards
the robustness of the ANN approach.

4.4. The Taishou ambiguity and the world war drop

Data imbalance has a negative impact on ANN performance (Michelucci, 2018) which
exists for pre-WWII data. Almost no reservoirs were constructed during that period of time
as Figure 8 demonstrates. Their data footprint is thus amplified compared to that for dams
in other epochs.
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Several measures were undertaken to reduce the data imbalance of pre-WWII data.
Though improvements were made, the Taishou Ambiguity demonstrates that these
imbalances were not overcome entirely. A rapid decline and a subsequent rise in dead
storage siltation is observable for many emulations.

This finding should not be taken literally; rather, it is a directional cue. If the drop
around 1920 were omitted, most emulations return to the prior magnitude of oversilta-
tion, as seen in Figure 6. The emulation graphs would then comply with the asymptotic
saturation behavior of siltation found in other research (Annandale, 2013; Basson, 1999;
Kantoush & Sumi, 2017).

4.5. Japanese reservoir situation and intrinsic optimism bias

According to Table 2 the dead storage capacity for a contemporary dam is likely to be
consumed after 51 years of operation. Figure 8 demonstrates the intensity of the Japanese
reservoir situation.

With respect to the inauguration distribution seen in Figure 9, this finding is quite alarming.
The majority of large and very large dams will soon reach 100% capacity of dead storage
volume, whilst the medium and small dams will likely do so within the next 5 to 10 years.

As mentioned in the introduction, it is needless to say that this analysis does not
account for every single dam – there are huge individual differences. Nevertheless, if the
Japanese reservoirs were regarded as an entity, the result is a reason for profound concern
regarding reservoir sustainability.

Because Japan is among the best-performing countries in terms of siltation manage-
ment(Auel et al., 2016; Kondolf et al., 2014), this finding implies an even more somber
situation for other countries.

The fact that the dead storage volume is comparatively small in relation to the rest of
the reservoir, as shown in Figure 10, means no relief for two reasons:

Figure 8. Distribution of siltation in Japanese reservoirs based on 2015 data.
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(1) As (Annandale, 2013; Basson, 2009; Kantoush & Sumi, 2017) imply, the siltation of
a reservoir does not occur entirely within the dead storage but also affects
a considerable fraction of active storage. Because this study found that in most
reservoirs, siltation is greater than expected, and the fraction of reduced active
storage is also assumed to be greater than expected.

(2) The dead storage serves as amarker. If clear laws such as the NTDM cannot be kept, the
implication can bemade that longevity is a feature that will not be kept. Thus, it can be
inferred that most reservoirs are not constructed in sustainable way, but rather in an
optimistic way due to the inside view (Kahneman, 2011). They are optimistically biased.
As Japan is a pioneer in sediment management (Kantoush & Sumi, 2019; Kondolf et al.,
2014; Sumi, 2015), we can assume that the effect is stronger throughout the rest of the
world, which implies that the global sustainability of reservoirs is not guaranteed.

4.6. The impact of governmental action

The introduction of the Antimonopoly Act and, hence, the effect of induced competition
on siltation in 1947 is not clearly perceivable. Moreover, almost no effect is noticeable for
the enforcement of competition in 1994. Among the 1947 and 1994 acts, the latter has

Figure 9. Distribution of dam inaugurations and corresponding medians; small = 1975, med-
ium = 1980, large = 1975, very large = 1969.
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a higher impact on competition according to Kinoshita et al. (2008) Thus, it seems likely
that competition has had no impact on siltation performance.

Two assumptions regarding this lack of effect might serve as explanations. First,
siltation is of minor significance for the economic competition that companies the
planning and construction of reservoirs, which fits the globally observed pattern
(Annandale, 2013). If long-term siltation performance is a decisive criterion in reser-
voir economics, far more new dams would include new measurements for reduced
siltation (Kantoush & Sumi, 2017; Zarfl et al., 2015). Second, the laws were of minor
efficiency, as indeed reported by Kanda and Fujii (2017): Dumping in pricing and
business collusion are still quite established in Japan. Thus, competition might not
have any effect because it is still nonexistent.

Contrarily to the competition, the introduction of strict obligations regarding monitor-
ing and indication seem to have influenced sediment performance. As Figure 6 shows, the
oversiltation reduction during the Shouwa Drop coincides for all of the emulations quite
neatly with NTDM introductions after 1957. Following the upper observations, the per-
ceived governmental effects must be assigned to the obligations made for siltation
monitoring and indicating.

Figure 10. Fraction of dead volume in relation to total reservoir volume with corresponding medians.
Small = 12.63%, medium = 11.35%, large = 11.03%, very large = 8.13%.
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5. Further thoughts on the variety of siltation conditions

The hydrological variability caused by climate changes have an increasingly high impact
on water and sediment inflow to the reservoir. One of the main shortcomings in global
siltation management is the implementation of a widespread quantification of flow and
sediment rating curves under the changing climate.

Annandale (2013) explained that the magnitude and spread of the anticipated increase
in hydrologic variability is not known. Therefore, it is necessary to make both engineering
and governmental decisions to deal with the uncertainties.

Kantoush and Sumi (2019) explained that there are various challenges regarding dam
management due to climate changes and increased number of flood peaks. A periodical
monitoring for reservoir siltation before and after every flood event is seen as a very
valuable practice. In case of increased reservoir siltation, an immediate intervention or an
upgrading of the dam facilities is necessary to recover the original dam functionality and
to ensure reservoir capacity is recommended to cope with the fiercer flooding events.
Moreover, physical processes of sediment transport and siltation as well as upgrading and
retrofitting effects on reservoirs of high age need to be understood to guarantee
a sustainable long-term operation,

Measuring the benefits and costs of siltation management improvement for the
development of a sustainable infrastructure is often difficult. However, it is unavoidable
that siltation management needs to perform economic feasibility studies for the meth-
odologies in consideration.

The long-term economic, ecologic and social costs and benefits of asset management
in coordination with changes in dam and downstream should be in perspective during
decision making (Annandale, 2013; Kantoush & Sumi, 2019). This should extend to include
a thorough assessments of climate change impacts on aging reservoirs and the determi-
nation of ecosystem responses to new reservoir projects as well as to the ongoing loss of
reservoir functionality of already installed dams. Moreover, critical studies to demonstrate
the social dimension of man-made reservoir interventions is inevitable for adequate
sediment management.

From the authors point of view and based on the findings regarding the optimism biased
management, (new) concepts and methodologies should be conceived a priori to design
intergenerational, sustainable, self-supporting rehabilitation systems for river basins with
man-made reservoirs. Further research is needed to guide the future management for aging
Japanese and global reservoirs to optimize and reflect both the huge investment decisions
that will have to be made and the legacy that reservoirs mean for the future generations.

6. Conclusions and outlook

The applied ANNmethodologies serve as a powerful tool for detecting optimism bias. The
latter likely exists in Japanese reservoirs because compliance with the NTDM directive
could not be assured. This observation implies that planners and practitioners hazard the
consequences consciously or unconsciously.

Although reservoir designers have powerful techniques at hand, they should consider
a more conservative approach for dam longevity and actively seek for outside view
information like the ones of the present paper.
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Neither the omission nor the implication of competition as a tool led to a different
sediment behavior during Japanese history. It is thus presumed that the reforms had
limited effects and/or that siltation does not play a decisive role in the consideration of
public procurement. This behavior is assumed to be global. In this case, it would have
a devastating impact on the worldwide long-term sustainability of reservoirs.

Emphasis is given to the power that governmental approaches possess, if applied
correctly (with an incorporated outside view). Countries and regions that are confronted
with sediment issues should take this power into consideration. Dams constructed under
such new directives might not produce the highest revenue in the short run but will most
certainly do so in the long run.

Moreover, active management and refurbishment methodologies should be under-
taken to guarantee and ensure the longevity and sustainability in already constructed and
new dams, as Kantoush and Sumi (2017); Auel et al. (2016) demonstrate.

Upcoming in-depth multivariate, multi-time series approaches with ANN methodolo-
gies will produce more detailed findings which should be useful in gaining more insight
for siltation management in Japan and worldwide.
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