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A B S T R A C T   

Climate change, drought, and anthropogenic effects are among the main drivers causing alterations in natural 
resources one of which is the lake level (LL) of large saline lakes, which are mainly located in arid and semi-arid 
regions. As an urgent need to manage natural resources, this study focuses on determining the significant reasons 
for the shrinkage problem of saltwater lakes. To this end, the long-term severity and frequency of droughts from 
2003 to 2020 and their spatiotemporal distribution in the Lake Urmia Basin (the second largest saline lake on 
Earth) were investigated based on the normalized difference vegetation index (NDVI) anomaly. Thereafter, 
monthly soil moisture, evapotranspiration, land surface temperature (LST), LL, NDVI, and precipitation time 
series were collected, Boolean images were used to generate drought frequency maps, and Mann-Kendall trend 
test techniques and wavelet transform coherence (WTC) were used to determine the impacts of anthropogenic 
activities and climate change on the region. The results indicated that the basin had only non-drought and mild 
drought conditions and did not experience moderate, severe, or very severe droughts. The results indicated that 
the mild drought indices covered 80% of the total area and were exposed for more than seven years. Pearson 
correlation analysis indicated that the primary reason for the drought was temperature anomalies (r = − 0.68) in 
the basin. The annually changing drought conditions in the basin revealed human effects on the basin. The results 
indicated a statistically significant positive trend in evapotranspiration time series, which was a reason for the LL 
decline. Thereafter, wavelet coherence was employed to delve deeper into the correlation between LL and the 
hydro-environmental datasets. The increasing vegetation cover in the situation that precipitation, land surface 
temperature, and soil moisture had stable conditions as well as common periodicities between the hydro- 
environmental variables, and the abrupt change points in significant periodicities revealed that anthropogenic 
activities in terms of agricultural expansion had increased in the basin. Besides, the annually changing condition 
of drought in the basin is also an indicator of anthropogenic activities that affect the environment. The differ
ences in the spatial distribution of the NDVI maps also indicated that people living in the western, eastern, and 
southern regions of the basin had cultivated more land.   

1. Introduction 

Lake-level (LL) decline is among the common environmental prob
lems in large lakes and seas across the world (e.g., Alivernini et al., 2018; 
Dehghanipour et al., 2020; Ye et al., 2020). The problems related to 
lakes can be categorized into climate change, droughts, and anthropo
genic impacts. Saltwater lakes with an approximately 82,676 km3 total 
volume account for 41% of the total global lakes and are mostly located 
in semiarid and arid basins (Wurtsbaugh et al., 2017). Due to the critical 
roles of these lakes in natural processes, it is vital to investigate the main 

reasons for this problem. LLs of large saline lakes across the world are 
declining at an alarming rate, which threatens economic activities, 
human health, and habitats. The oldest known impact of saline lake 
desiccation on humans was in the Tarim basin, which led to the collapse 
of a kingdom (Mischke et al., 2017). Fig. 1 presents some of the large 
saline lakes (formerly larger than 250 km2) that have water-related 
problems due to drought, climate change, and/or anthropogenic activ
ities. For example, the Aral Sea lost 74% of its area due to agricultural 
activities, Owens Lake in California disappeared by 1940, and the Dead 
Sea lost a great deal of inflowing water due to excessive usage of fresh 
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water for drainage (Wurtsbaugh et al., 2017). The main difference be
tween exploring a fresh-water lake and a saltwater lake are the outflows 
from the lake. The water of freshwater lakes can directly be used for 
drinking, agricultural purposes and other activities but the water of 
saline lakes are not appropriate for these utilizations. Lake Urmia, as the 
second largest saltwater lake on Earth and the largest lake in Iran, has 
experienced a rapid LL decrease during the past two decades. Some re
searchers have attempted to determine the reasons for the decline by 
studying drought in the basin (e.g., Amirataee et al., 2018; Lashkari 
et al., 2021). Several studies have argued that human land and water use 
were the primary reasons for the problem (e.g., Khazaei et al., 2019; 
Foroumandi et al., 2021). On the other hand, other studies have pro
posed that dam construction was the leading cause of the decline, 
although this was rejected in a paper that observed the same trend in 
headwater areas (Fathian et al., 2014). According to previous studies, 
due to the low quality of the water, which makes it inappropriate for 
drinking and agricultural activities, the special topography of the region, 
which makes any direct outflow impossible, and reviews on ground
water gradient directions, which indicate no considerable volume of 
flows, the only outflow from the lake is through evaporation (Hassan
zadeh et al., 2012). The significant reasons for the problems related to 
saltwater lakes can be traced to drought, climate change, and anthro
pogenic activities. 

Drought, as one of the potential reasons for the problems of salt 
water bodies, is a devastating environmental disaster that occurs in all 
climatic zones. The reduction in precipitation volume in the crop- 
growing season, increasing temperature, and human activities are 
among the important reasons for droughts (Zhao et al., 2020). Meteo
rological drought, agricultural drought, hydrological drought, and 
socio-economic droughts are four major groups to classify droughts. 
Researchers use various methods and indices to monitor and study 
droughts. Assessment of vegetation health and condition changes by 
remote sensing (RS) tools is widely used for drought detection. The 
normalized difference vegetation index (NDVI) is one of the most 
frequently used vegetation indices to monitor environmental situations 
(e.g., Fujihara et al., 2020; Nourani et al., 2021). 

Currently, climate change is among the most significant reasons for 
variations in the environment. Investigation of the impacts of climate 

change is crucial in studying hydrologic variables, including studies 
related to lakes. There is a significant demand to study climate change in 
lake basins due to its harsh effects on the environment. Drivers and 
climate change indicators are complicated and can be traced by inves
tigating hydro-environmental variables, such as temperature, precipi
tation, evapotranspiration (ET), and soil moisture (SM). In recent years, 
trend analysis has been used to determine the impacts of climate change 
and human activities on the environment. The intensification of hy
drologic cycles is one of the most apparent effects of climate change 
(Zhang et al., 2009). In this regard, Different statistical methods have 
been used to study potential trends in time series. For example, 
Danandeh Mehr and Vaheddoost (2020) used trend test techniques to 
investigate drought across Ankara, Turkey. In another study, Danandeh 
Mehr et al. (2021) utilized two new and two classic methods to explore 
long term temperature and precipitation time series. As a statistical 
method, the Mann-Kendall (MK) trend test is one of the most widely 
used approaches in hydro-environmental and climate studies (e.g., 
Nyikadzino et al., 2020; Zhai et al., 2020). 

To determine the impacts of climate change and anthropogenic ac
tivities on the environment, studying the relationships between hydro- 
environmental variables can be of great help. Previous studies have 
applied correlation coefficients such as Pearson’s correlation (PCC) and 
linear correlation to investigate the relationships between drought 
indices, climatic factors, and hydrologic variables (e.g., Nanzad et al., 
2019; Khazaei et al., 2019). These coefficients can provide useful in
sights into the relationships; however, they are too simple to reflect the 
changes or proper investigation of the relationships between naturally 
related variables (Liu et al., 2017). Wavelet transform coherence (WTC) 
is a mathematical tool that analyses the linkage between two time series 
in both the frequency and time domains. It combines the cross-spectrum 
with wavelet transform; consequently, it is able to determine charac
teristics in the relationship between two time series. It is suggested to 
utilize WTC, which first normalizes the wavelet power spectra and then 
measures the cross-correlation of the given string (Liu et al., 2019; 
Elsanabary et al., 2021). 

Large salt water lakes around the world, including Lake Urmia, are 
experiencing many problems. As an urgent need to manage water re
sources, the current study uses remote sensing tools, Mann-Kendall 

Fig. 1. Some of the world’s large saline lakes with water-related problems.  
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trend tests, and wavelet transforms to investigate the hydrologic and 
environmental situation in the Lake Urmia Basin, which is the second 
largest saline lake in the world. Long-term spatiotemporal drought, 
climate change, and anthropogenic impacts are detected and monitored 
in the Lake Urmia basin, and their characteristics are traced using 
hydroclimatological attributes. To the best of our knowledge, this is the 
first time that spatiotemporal problems of large saltwater lakes have 
been investigated at this scale at the same time to determine significant 
problems. 

2. Materials and methods 

2.1. Case study 

Lake Urmia, located between 37◦4′ and 38◦17′ latitude and 45◦13′ to 
46◦ longitudes (Fig. 1), is a hypersaline lake. The lake was the second 
largest saline lake on Earth before September 2010, and it is the largest 
lake in Iran. The lives of more than 6 million people depend on their 
relationship with the lake (Delju et al., 2013). In recent years, a quarter 
of the lake has changed to saline regions. Variation in LL was 7 m in a 
lake that was 16 m deep from 1992 to 2020. The basin of the lake is 
surrounded by mountains, and the climate is cold and continental. 
Annual precipitation rate in the basin is 341 mm, temperature fluctua
tion is 62 ◦C, and the maximum and minimum temperatures are 39 ◦C 
and − 23 ◦C, respectively [Iran Meteorological Organization (IRIMO)]. 
The area of the lake was about 5650 and 4610 km2 in 1998 and 2001, 
respectively and the normal catchment area of Urmia lake is about 51, 
676 km2 which means 3.15% of the entire country [Urmia Lake Basin 
Integrated Water Resources Management (IWRM)]. 

2.2. Proposed methodological approach 

The current study proposed an innovative approach, presented in 
Fig. 2, to investigate the main reasons for LL decline in large saline lakes 
with a focus on Lake Urmia, and includes four major steps:  

I Data collection: RS tools were utilized to create the NDVI, LST, 
SM, ET, and precipitation time series. LL data were provided by 
the Urmia Lake Restoration Program.  

II Calculations of drought indices and indicators: NDVI, LST, and 
precipitation anomalies were calculated as the differences be
tween the value of each year and the average value.  

III Drought severity and frequency map: Investigating classified 
spatiotemporal drought severity and frequency maps and the 
main reason for the drought.  

IV Analysing trends: The Mann-Kendal trend test was used to 
determine potential trends in the monthly hydrometeorological 
time series.  

V Correlation analysis: WTC was used to analyse the relationships 
between LL and LST, precipitation, ET, and NDVI datasets to 
determine the impacts of anthropogenic activities and climate 
change on the lake-level problem of Lake Urmia. 

In the coming sections, each step is elaborated as the basis for the 
study. 

2.3. Data collection 

NDVI is a popular index that is used to study vegetation cover over 
land. The NDVI is a normalized parameter that ranges between − 1 and 
1. Closer values to 1 indicate denser and fresher vegetation (Pettorelli 
et al., 2005). Monthly NDVI data as a remotely sensed index were 
collected using the product of MODIS (MOD13A1v006). Additionally, 
the MOD11A1 product of MODIS was used to generate the monthly LST 
time series. LST is a crucial parameter in the energy flux between the 
Earth and atmosphere (Sobrino et al., 1991). 

Launched in 1997, TRMM carries several instruments, including the 
Visible Infrared Radiometer (VIRS), TRMM Microwave Imager (TMI), 
Cloud and Earth Radiant Energy Sensor (CERES), Lightning Imaging 
Sensor (LIS), and Precipitation Radar (PR). Using remote sensing satel
lites, ground rainfall gauges, and infrared sensors, TRMM utilizes 
various methods to generate precipitation time series (Keikhosravi 
Kiany et al., 2020). The TRMM product was used to extract monthly 
precipitation data in the Lake Urmia basin. 

The monthly ET and SM time series were generated using the Global 
Land Data Assimilation System (GLDAS) model, which provides data 
from 1984 by combining satellite observations and land surface models 
named Noah, VIC, Mosaic, and CLM. Previous studies have shown that 
the GLDAS dataset is sufficiently accurate for hydrologic and environ
mental studies in Iran (Moghim, 2018). 

Fig. 2. Schematic of the proposed methodology to investigate the main reasons for the lake-level decline in large saline lakes.  
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2.4. Calculation of drought indices and indicators 

The current study utilized NDVI anomaly to study drought severity 
and frequency over the Lake Urmia basin. The positive values of the 
NDVI anomaly indicate normal conditions, and negative values show 
severe drought conditions. To calculate the standardized NDVI anomaly 
percentage for each year in each pixel, first, the mean NDVI of the period 
(crop-growing season) was computed, and then the overall NDVI mean 
(NDVI) was calculated for 2003–2020 for each pixel (Nanzad et al., 
2019): 

NDVI =
∑n

i=1

NDVImean(i)

n
(2)  

where NDVImean(i) is the mean NDVI for each year from 2003 to 2020, 
and n is the number of years, which equals 17 years. Thereafter, the 
standardized NDVI anomaly percentage could be derived for each pixel 
in each year as: 

NDVIanomaly(i) =
NDVImean (i) − NDVI

NDVI
× 100 (3)  

where NDVIanomaly (i) is the NDVI anomaly for each year during the 
growing season for each pixel. NDVI anomalies should then be averaged 
to calculate the mean NDVI anomaly over 18 years. 

The LST and precipitation anomalies were also calculated in the 
same way to determine the primary reasons for drought by analysing the 
correlation between them and NDVI anomalies. 

2.5. Drought severity and frequency 

Drought severity classification was performed in this study based on 
the NDVI anomaly classification scheme, as shown in Table 1. The 
scheme classifies drought severity into normal, mild drought, moderate 
drought, severe drought, and very severe drought. 

Drought frequency was studied by interpreting each of the drought 
maps as a Boolean image. For each year and drought severity class, a 
binary map was generated; a total of 18 Boolean annual maps were 
generated for each category. The Boolean logic math tool interprets the 
inputs as Boolean values, where zero values are considered false and 
nonzero values are considered true. Here, a Boolean map indicates 
whether a specific kind of drought severity occurred in a pixel. Then, the 
frequency of each class was obtained by adding 17 binary maps at each 
pixel. 

2.6. Mann-Kendall trend tests 

The Mann-Kendall test is a well-known trend test analysis in various 
study fields since no specific statistical distribution is needed to use the 
test (Figueira Branco et al., 2019). The original version of the test (MK1) 
is used to study the time series with no significant autocorrelation. 

High positive and low negative MK statistical values denote statis
tically significant increasing and decreasing trends, respectively. The 
significance of a trend is determined according to the probability value 
(p-value). The null hypothesis of no trend in the MK test is not accept
able provided that the p-value becomes less than the predefined signif
icance level (here, α= 5%) or greater than the confidence level (95%) 

(Rashid et al., 2015). 
The results of the trend analysis may be misguided if the time series 

contains significant autocorrelation and seasonality patterns (Nalley 
et al., 2012). Autocorrelation analysis is needed to avoid this problem. 
The Lag-1 autocorrelation coefficient is used to examine the significance 
of autocorrelation. If the dataset includes a significant autocorrelation, it 
is suggested to use the prewhitening MK test (MK2), by which, first, the 
autocorrelation should be removed from the time series and then the MK 
test should be applied (e.g., Yue et al., 2002; Mullick et al., 2019; Mallick 
et al., 2021). 

2.7. Correlation analysis 

In this study, the correlation between the drought indices and tem
perature and precipitation anomalies was studied to determine the main 
reasons for drought in the basin. In addition, the correlation between 
hydroclimatological factors and LL was analysed to investigate the main 
reasons for LL decline. In this regard, the PCC test was used to study the 
correlation between the drought indices and climatic factors. The WTC 
was then employed to reflect the direction and degree of correlation 
between the hydro-environmental variables and LL. The WTC is used to 
examine the changing characteristics of two given time series and to 
investigate coupled oscillations in both the time and frequency domains 
(Torrence and Compo, 1998). The current study used the Morlet wavelet 
function due to its applicability for hydro-environmental time series 
investigations (Grinsted et al., 2004). 

The phase differences were plotted on WTC graphs by arrows 
directing in terms of radians. A positive correlation (in-phase) between 
two given time series is indicated by an arrow pointing up or to the right 
with x leading. An arrow pointing to the left shows a negative correla
tion (anti-phase). In a WTC graph, the period at the 5% significance level 
in which the time series has a high correlation is shown with thick black 
lines and Cone of Influence (COI); where the impacts of edges are de
nied, this is shown with a thick counter line (Torrence and Compo, 
1998). 

When investigating PCC, if the value of the coefficient becomes 
greater than zero, the two variables have a positive relationship. For 
values less than zero, the variables have a negative relationship, and a 
zero value indicates that the variables do not have any relationship 
(Tong et al., 2017). 

3. Results and discussion 

The current study used remote sensing tools and ground measure
ments to develop long-term spatial maps for alterations. The developed 
maps were utilized to assess the impacts of drought, climate change, and 
anthropogenic activities on Lake Urmia. At the first stage, drought 
spatiotemporal severity maps were investigated, and the main reasons 
for drought in the basin were determined. At the next step, trend tests 
were performed to study potential trends in hydroclimatological time 
series in the basin. Finally, WTC was used to delve deeper into the re
lationships between different variables and the LL of the lake. 

3.1. Data analytical results 

The mean LST and precipitation distribution were extracted to study 
the spatial relationships between the factors and drought frequency and 
severity maps. The datasets were calculated for each year and each pixel 
in the basin during the crop-growing seasons. Then, the mean values 
were computed for all study years for each pixel. Thereafter, the final 
data were acquired as a statistic for the entire basin for each year and all 
years. The mean LST for each year in the entire basin fluctuated between 
40 ◦C for 2006 as the coldest year, and 49 ◦C for 2014 as the warmest 
year. The mean LST for 2003–2020 during the growing seasons for each 
pixel, as indicated in Fig. 3 (a), ranged from 26 ◦C to 56 ◦C. The basin 
had approximately 30 ◦C temperature fluctuations in a pixel-by-pixel 

Table 1 
Drought severity classification (Nanzad et al., 2019).  

Drought severity class NDVI anomaly percentage 

Normal (non-drought) Above 0 
Mild drought 0 to − 10 
Moderate drought − 10 to − 25 
Severe drought − 25 to − 50 
Very severe drought Below − 50  
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comparison, and the mean LST in the basin for 17 years was approxi
mately 45 ◦C during the growing seasons. According to the results, 2017, 
with an 11 mm average monthly precipitation, was the driest year, and 
2004, with 26 mm, was the wettest year. Additionally, the mean pre
cipitation for 2003–2020 during the growing seasons, as indicated in 
Fig. 3 (b), for each pixel, ranged between 8 mm and 43 mm, with 35 mm 
of precipitation fluctuations because of the semiarid climate of the re
gion, and the mean precipitation in the entire basin was 17 mm. The 

northern pixels of the map had more precipitation than the southern 
pixels, which were mainly the pixels over the lake. 

The monthly time series were employed for 2003–2020 (216 months 
in total), as shown in Fig. 4, to study the relationships between the time 
series of hydrologic and atmospheric variables using the WTC and their 
potential trends. 

Fig. 3. Spatial distribution map of (a) mean LST and (b) mean precipitation during crop growing seasons in 2003–2020.  

Fig. 4. The monthly time series of hydro-environmental variables in the Lake Urmia Basin during 2003–2020; (a) lake level, (b) evapotranspiration, (c) LST, (d) 
NDVI, (e) precipitation, and (f) soil moisture. 
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3.2. Drought zoning 

Drought monitoring in the Lake Urmia Basin was performed by 
generating drought maps using the NDVI anomaly from 2003 to 2020, 
and the results are presented in Fig. 5 and Table 2. According to the 
results, in the past 17 years, the percentage of areas that have suffered 
from moderate, severe, or very severe drought was less than 0.01%. The 
high rate of the regions affected by mild drought illustrated abnormal 
environmental conditions in the basin in recent years. The years most 
affected by drought among the past 17 years were 2008 and 2009, with 
91.6% and 84.0% of the area, respectively. Additionally, some parts of 
the basin experienced mild drought in almost all study years, a sign of 
long-term drought. The percentage of the areas affected by drought in 9 
years was more than 50%, while for only two years, more than 80% of 
the total area was identified as areas with normal conditions. In addi
tion, only two years showed mild drought conditions in more than 80% 
of the entire area. Among the study years, 2018 and 2019, with 84.6% 
and 82.1% of the total area, respectively, were considered wet years and 
years less affected by drought. The results indicated that long-term mild 
drought conditions ended in 2018 in the basin. The unsteady and sudden 
change in drought conditions is an indicator of the effects of human 
activities in the basin, which triggered the switching of drought levels 
with high spatiotemporal variations. 

Drought frequency is defined as the number of years that a specific 
class of drought has occurred in a pixel. Boolean images were used to 
investigate drought conditions in the pixels for each year as 0 for not 
occurred and 1 for occurred. According to Table 2, only the mild drought 
class occurred in the Lake Urmia Basin in the past 17 years; therefore, 
one frequency map was generated for this class, as shown in Figs. 6 and 
7. According to Fig. 6, the northern and northeastern parts of the basin 
experienced more drought frequency over the past 17 years. Fig. 4 also 
shows that during the years with a low area percentage of droughts, such 

as 2011, 2018, and 2019, the basin still experienced mild drought in the 
northern and northeastern regions. According to the drought frequency 
histogram (Fig. 7), more than 80% of the total area experienced drought 
with 7, 8, 9, and 10 frequencies, indicating long-term mild drought in 
the basin. Long-term drought can be very harmful to water resources, 
agriculture, forestry, buildings, industry, and tourism. 

LST anomalies and precipitation anomalies were calculated to 
determine their correlation with the NDVI anomaly. The PCC illustrated 
a positive correlation between the NDVI anomaly and mean precipita
tion anomaly (r = 0.42) and a negative correlation between the NDVI 
anomaly and LST anomaly (r = − 0.68). The results indicated that the 
temperature anomalies had more substantial effects on the drought in 

Fig. 5. The spatial pattern of drought severity in the Lake Urmia Basin during the growing seasons.  

Table 2 
The percentage of drought-affected areas in the drought severity classes.  

Year Normal Mild Moderate Severe Very severe 

2003 65.1450 34.8387 0.0108 0.0028 0.0027 
2004 68.6097 31.3764 0.0072 0.0029 0.0038 
2005 56.1109 43.8773 0.0063 0.0032 0.0023 
2006 37.7232 62.2656 0.0049 0.0031 0.0032 
2007 72.1499 27.8378 0.0068 0.0032 0.0023 
2008 08.3764 91.6122 0.0050 0.0019 0.0045 
2009 15.9650 84.0281 0.0023 0.0014 0.0032 
2010 42.5199 57.4702 0.0054 0.0022 0.0023 
2011 79.0832 20.9082 0.0045 0.0013 0.0028 
2012 49.2093 50.7821 0.0050 0.0009 0.0027 
2013 48.0390 51.9528 0.0046 0.0009 0.0027 
2014 26.5207 73.4721 0.0040 0.0009 0.0023 
2015 38.3205 61.6686 0.0068 0.0009 0.0032 
2016 49.5976 40.3947 0.0036 0.0009 0.0032 
2017 44.4058 55.5864 0.0028 0.0019 0.0031 
2018 84.6401 15.3514 0.0046 0.0009 0.0030 
2019 82.1312 17.8615 0.0042 0.0004 0.0027 
2020 31.3157 68.6720 0.0038 0.0002 0.0083  
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the basin. Some pixels in the northern parts of the map received more 
precipitation, with higher temperatures than the other pixels, and they 
showed more drought frequency in the study years. The reason for this is 
related to the fact that with higher temperatures, more evaporation 
occurred. While this produces more air moisture, all increased humidity 
does not fall over the same region, which leads to dry surfaces and 
contributes to the duration of droughts. Although the pixels located in 
the southern parts of the basin showed high LST and fewer precipitation 
values, they had less drought frequency than the pixels located in the 
northern parts of the basin. There are four large rivers in the southern 
part of the basin that have more than 65% inflow contribution to the 
lake, and the rivers provided sufficient water to support a significant 
amount of the land even during droughts. 

The stronger PCC between drought conditions and the temperature 
anomaly than the precipitation anomaly indicated that the main reason 
for the mild drought conditions in the basin was the temperature 
anomaly. According to the results, while a long-term drought occurred 
in some parts of the basin from 2003 to 2017 and affected the lake, the 
Lake Urmia basin has never experienced harsh drought conditions 
during the past 17 years. In 2018 and 2019, when the basin experienced 
normal conditions, the LL was almost stable and even increased in some 
months; however, in the other years with wet conditions, such as 2007 
and 2011, the LL was still decreasing. It could be concluded that drought 

had essential impacts on the LL, although it was not the main reason for 
the decline. 

3.3. Trend analytical results 

Potential hydrologic and atmospheric trends in the basin were 
investigated at a monthly timescale to find traces of climate change. 
First, the lag-one autocorrelation coefficient of the hydro-environmental 
time series was computed to determine the significance of autocorrela
tion in each dataset. Table 3 presents the results of the analysis; addi
tionally, correlograms were used to find autocorrelations (examples are 
given in Fig. 8). Long-term trends in the variables show climate-driven 
variations and provide information on hydrologic and atmospheric 
characteristics of the basin. 

The correlograms indicate various powerful lags in the time series. 
High lag-1 values show that the MK2 trend test should be applied to 
study potential trends in the time series. Autocorrelation with a 12- 
month time lag indicates high seasonality patterns in the time series, 
which is an indicator that wavelet approaches should be employed to 
investigate the time series. Seasonality patterns are the specific features 
of some hydroclimatological variables such as precipitation and 
temperature. 

The MK tests indicated a statistically significant decreasing trend in 
the LL dataset (Z-value = − 3.61). Accordingly, there was no meaningful 
trend in precipitation time series (Z-value = − 0.25) in the basin, which 

Fig. 6. Mild drought frequency map during the growing seasons 2003–2020 in the Lake Urmia Basin.  

Fig. 7. Drought frequency histogram.  

Table 3 
Lag-one autocorrelation of the variables.  

Variable Lag-one Z-value 

LST 0.8314 1.4941 
NDVI 0.6570 2.5972 
ET 0.7173 2.7327 
Precipitation 0.4239 − 0.2587 
LL 0.8917 − 3.6165 
SM 0.7947 0.8427 

* The bold values indicate a statistically significant autocorrelation; therefore, 
MK2 was used to study their trends. 
* Underlined values have statistically significant trends. 
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indicates that precipitation was not the primary reason for the LL 
decline. The Z-value of the SM (=0.84) also indicated that there was no 
notable trend in the SM time series. In addition, the results showed that 
the LST time series did not have a significant positive trend (Z-value =
1.49) in the basin, which is an indicator of the unimportant role of 
increasing temperature in the problem. It is concluded that increasing 
the temperature did not have a considerable impact on the LL decline. 
The MK trend tests revealed a positive, statistically significant trend in 
the NDVI (Z-value = 2.59), which could be an indicator of expansion in 
agricultural and irrigation activities. The observed increasing trend in 

the NDVI is consistent with recent literature that reported increasing 
water withdrawal and increasing agrarian activities in the basin (e.g., 
Ashraf et al., 2017; Chaudhari et al., 2018). Besides, the results are in 
alignment with general drought assessment in Iran which stated that 
Iran’s agriculture has expanded even in dry years (Maghrebi et al., 
2020). On the other hand, ET rose with a significant trend (Z-value =
2.73) when precipitation and SM levels were generally stable. It is 
concluded from the fundamental water balance rule in a watershed that 
increased ET in the basin with steady precipitation, and SM conditions 
indicate decreasing runoff in the watershed and the lake’s inflow. This 

Fig. 8. The correlograms of the NDVI time series.  

Fig. 9. Wavelet coherence between LL time series and (a) ET, (b) LST, (c) NDVI, and (d) precipitation time series.  
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fact was also reported in recent studies for other water resources in the 
world, such as Destouni et al. (2013) for the Aral Sea. 

3.4. Results of correlation analysis 

To further investigate the relationships between LL decline and 
variations in the hydrologic and atmospheric variables, correlation 
analysis was performed using WTC at a monthly scale. Fig. 9 (a) shows 
that the common periodicities between the LL time series and ET have an 
8-16-month frequency band. The in-phase correlation from 2003 to 
2011 can be observed in the graph. The 8-16-month frequency corre
lation between ET and LL stretched from 2003 to 2016; however, its 
significance was lower from 2008 to 2011 when, according to Fig. 4a, 
the LL did not experience a continuous decline. A quarter phase differ
ence between the LL signal and ET time series from 2011 to 2016 in an 8- 
16-month period reveals that ET affects LL with a 2-4-month time lag. 
The time lag was in-phase, again, in the last months of this period, but 
from 2016 to 2019, its significance experienced a remarkable decline, 
which became strong again after early 2019. Significant deterioration 
should have an anthropogenic reason because nature-related processes 
are gradual processes. This decline coincided with the start of the new 
rules and policies of the government to control agricultural activities. 
According to Fig. 4a, from 2017 to 2019, the LL increased, and from 
2019, it declined again. According to Fig. 9 (a), ET and LL have common 
periodicities in a 4-8-month frequency band, which was not significant 
in the first stage of the period, but from 2012 to 2018, it became sta
tistically significant with a 1-2-month lag time when the LL was 
decreasing. The close correlation between ET and LL time series in 
various years, especially the years in which LL was declining and ET was 
increasing significantly, indicates that ET plays an important role in the 
LL decline of Lake Urmia. 

The WTC between LST and LL (Fig. 9b) shows that there was a strong 
correlation with an 8-16-month frequency. The significant parts of the 
relationship shown in the graph (Fig. 9b) are almost in the years and 
frequencies as those for ET and LL in the WTC graph (Fig. 9a), which 
show a close relationship between ET and LST. High temperatures could 
intensify ET from the basin and evaporation from the lake’s surface. 
Although the high temperature was one of the primary reasons for the 
high ET level, it was not the main reason in the basin because the 
increasing trend in the ET time series was much greater than that for 
temperature. In addition, ET showed some common periodicities with 
LL at various frequencies and years, but LST shared an 8-16-month 
frequency with LL, similar to ET. 

According to Fig. 9 (c), the common periodicities between the LL and 
NDVI time series had an 8-16-month frequency band from 2003 to 2016 
similar to ET. A quarter phase difference between the LL and NDVI time 
series from 2011 to 2016 in 8–16-month periods indicated that the 
vegetation cover affected LL with a 2-4-month time lag. The time lag was 
also the same as the time lag between ET and LL from 2011 to 2016. 
There was a significant correlation between the NDVI and LL in 4-8- 
month periodicities with a 2-4-month time lag from 2012 to 2018, 
which could also be seen between ET and LL. The same correlation be
tween LL and ET and NDVI indicated that vegetation cover had a sig
nificant impact on ET. Moreover, the statistically significant positive 
trends in ET and NDVI datasets revealed in the previous section, as well 
as a close correlation in different years and periods between the ET and 
NDVI, showed that the increasing ET in the basin, which led to a 
decreasing LL, was an effect of increasing vegetation cover in the 
absence of sufficient precipitation and SM. 

Regarding the WTC results between precipitation and LL (Fig. 9d), 
the common periodicities had an 8-16-month frequency band with a 
quarter phase difference from 2003 to 2009. It smoothly changed to 
anti-phase after 2013. A close correlation between precipitation and LL 
was seen in almost all years, which indicates a close relationship. Ac
cording to the nonsignificant trend in the precipitation time series and 
its close correlation with LL in every month, it could be concluded that 

although precipitation had a close relationship with LL, the precipitation 
problem did not have significant impacts on the LL decline of the lake. 

The results of the WTC (Fig. 9) indicated that human land- and 
water-use impacts are obvious in the region. To confirm the results and 
perform more investigations in the region to determine the locations 
with significant agricultural expansion, NDVI maps between 2003 and 
2020 were generated (Fig. 10). 

Although there has always been heated debate among different 
provinces located in the basin (East Azerbaijan, West Azerbaijan, and 
Kurdistan) relating to the problem, Fig. 10 illustrates that human ac
tivities have impacted the entire basin. According to Fig. 10, the spatial 
distribution of the regions with dense vegetation cover changes between 
2003 and 2020. To explore the landscape and identify the category of 
vegetation cover, a field investigation was performed, and the results 
validated that the regions were farmlands. The results of the fieldwork in 
addition to the RS map results indicate that agricultural expansion has 
occurred in all three provinces. According to the vegetation cover maps 
of 2003 and 2020 (Fig. 10), the highest value of NDVI in the basin was 
increased during the past 17 years. The growth in NDVI is an indicator of 
healthier vegetation cover. The denser vegetation cover in the basin in 
the situation that there is no increment in precipitation, is another in
dicator of growing anthropogenic activities in the basin. 

4. Conclusions 

Investigating the main reasons for the hydro-environmental prob
lems of large saline lakes is a priority in studies related to water re
sources, the environment, hydrology, and climate change. The situation 
plays a crucial role in global change due to its effects on many natural 
processes. To determine the main reasons, drought indices and hydro- 
environmental factors in the Lake Urmia Basin, as the second-largest 
saline lake on Earth, were investigated in this study. 

The results showed that the Lake Urmia Basin experienced long-term 
mild drought conditions from 2003 to 2018. Additionally, almost all 
other years have experienced drought situations, with more than 30% of 

Fig. 10. NDVI maps of the Lake Urmia Basin (2020 and 2003).  
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the entire area. According to the results, the basin had only non-drought 
and mild drought conditions and did not experience severe droughts. It 
is concluded that drought condition could have intensified the LL 
decline but it could not be the significant reason. The annually changing 
condition of drought in the basin is also an indicator of anthropogenic 
activities that affect the environment. 

The trend analysis of the hydroclimatological and LL time series 
showed a considerable decreasing trend in the LL time series. The 
increasing trend in the NDVI and ET time series based on stable pre
cipitation, LST, and SM indicated that anthropogenic activities in the 
basin are the main reason for the problem. The WTC results showed the 
common periodicities between the LL and hydroclimatological time 
series. According to the main periodicities, it was concluded that the 
main reason for increasing ET in the basin was increasing vegetation 
cover in terms of agricultural activities, which led to the LL decline of 
the lake. At the next stage, the NDVI maps of 2003 and 2020 were 
visually compared, and a field investigation was performed to confirm 
the results of the WTC and to determine the main locations of excessive 
water usage. The conclusion is that agricultural expansion has occurred 
in all three provinces in the basin. 

The results of this study are a call to action for water resource 
managers and people to consider water-related and water-induced 
problems in their water-utilization programs. Studying groundwater 
and surface waters in the basin using the same approaches may improve 
the results of future studies, which were limitations in the current study 
due to data scarcity. Large saline lakes have various problems world
wide, including lake-level decline, and human water and land use are 
among the main reasons for a great number of issues. Depletion of water 
resources will cause human health, economic, and habitat problems not 
only in this region but also all over the world. 
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