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A B S T R A C T   

The long-term spatiotemporal assessment of groundwater resources through robust clustering techniques can be 
used to promote remediation measures for groundwater depletion and contamination. To fully understand the 
variability of groundwater quantity and quality due to anthropogenic activities and climate changes, a new 
ensemble clustering framework based on the Combining Multiple Clusters via Similarity Graph (COMUSA) 
method was developed. This new approach was applied and evaluated in the context of groundwater well sys-
tems on the Ghorveh-Dehgolan Plain (GDP), which is located in western Iran, for groundwater level (GWL) and 
13 physicochemical parameters during four periods (the average of data from 1988–1990, 1997–1999, 
2006–2008, and 2015–2017). The classification was confirmed by using the cluster validity index of the 
silhouette coefficient (SC), which indicated that the cluster ensemble method could improve the performance of 
individual clustering methods for groundwater quantity and quality by up to 12% and 20%, respectively. Piper 
plots, US Salinity Laboratory Staff (USSL) diagrams, and the pollution index of groundwater (PIG) were assessed 
for all clusters of physicochemical variables to analyse groundwater suitability for drinking and irrigation pur-
poses. The results of the cluster ensemble showed that a critical pattern of groundwater depletion occurred in the 
western half of the GDP, while the eastern part was recognized as the most polluted zone on the plain. It could be 
concluded that the decline in GWL was not the only reason for the increase in groundwater quality variables, but 
other factors, such as noticeable cropland expansion and the overuse of chemical fertilizers and pesticides, were 
also influential factors related to these patterns. Taken together, the results of this study contribute to better 
recognizing the spatiotemporal changes in groundwater quantity and quality under the intense pressure of 
anthropogenic activities.   

1. Introduction 

Sustainable groundwater management is one of the significant issues 
in environmental engineering. While freshwater scarcity affects human 
life, there is also ample evidence suggesting that the quality of 
groundwater, the largest freshwater resource, is threatened due to the 
combination of industrial development, inadequate sanitation systems, 
chemical fertilizers and pesticides, and groundwater depletion. 
Groundwater depletion and contamination of aquifers affect human 
health, costs of water supplies, and future civilization; hence, recog-
nizing changes in groundwater quantity and quality is an essential part 
of informed water resource protection. 

Groundwater quality depends on changes in various variables, and 

spatiotemporal assessment of each variable is a complicated and time- 
consuming procedure. To simplify assessments of groundwater quality, 
decreasing the large dimension of water quality variables and repre-
senting data in a simpler way, various water quality indices have been 
proposed, which provide a simple value to identify the quality of water. 
For instance, the relative effect of each chemical variable on the general 
chemical quality of groundwater may be assessed using the pollution 
index of groundwater (PIG). This index quantifies the concentration 
status of water quality measures related to their standards for drinking 
water quality (e.g., see Subba Rao and Chaudhary, 2019; Egbueri, 
2020). 

Considering the importance of groundwater protection, finding 
efficient methods to recognize complex relationships between various 
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variables is an essential step in extracting the most homogeneous pat-
terns. Additionally, spatiotemporal assessments of these homogeneous 
patterns can effectively find and trace the time and place of changes in 
groundwater variables. In this regard, one of the robust multivariate 
analyses is clustering, which is widely used to classify multidimensional 
inputs into homogeneous groups. Clustering can extract features from an 
unlabelled input to form clusters having maximum within-group-object 
similarity and between-group-object dissimilarity (Nourani and Kalan-
tari, 2010). 

In general, all members of each cluster may be regarded to have 
almost the same pattern that can simplify evaluation and accelerate 
decision-making processes, for instance:  

(i) A designed water resource management strategy for a member (e. 
g., watershed or piezometer) may also be applied to the other 
cluster members, which have similar conditions.  

(ii) Variables of a hydrological model for a cluster member may 
further be verified for other members of that cluster.  

(iii) The available data of a cluster may be used to fill in missing data 
of other members within the same cluster. 

The powerful applications of clustering methods have encouraged 
researchers to take advantage of various clustering algorithms in 
groundwater assessment for specific purposes (Table 1). As a practical 
linear type of clustering, the K-Means algorithm has been applied to 
several hydrology fields due to the simple linear structure that can 
classify unlabelled inputs into separate K clusters (e.g., Fabbrocino et al., 
2019; Sharif et al., 2015). Hierarchical cluster analysis (HCA) is another 
successful clustering approach developed as a powerful partitioning tool 
that seeks to build a hierarchy of clusters. Different HCA types (single 
linkage, complete linkage, average linkage, and WARD method) have 
yielded valuable results in groundwater assessment research (e.g., see 
Bhakar and Singh, 2019). 

Some clustering algorithms utilize competitive learning concepts to 
classify data automatically, and one of the best-known examples is the 
self-organizing map (SOM). In the standard version of SOM, the number 
of neurons should be set based on the expected number of clusters. 
Previous studies have revealed that SOM is a powerful tool to visualize 
different groups of groundwater quality and quantity variables (see Wu 
et al., 2021; Baghanam et al., 2020; Nourani et al., 2016). 

Although SOM has been widely applied for clustering purposes, the 
inefficiency in topology recognition is a major limiting factor of the SOM 
method. Another limitation of utilizing the SOM clustering method on 
large-scale structures of inputs is the time-consuming process of SOM. 
To diminish the impacts of these limiting factors, other alternative 
methods have been suggested on the basis of SOM. Growing neural gas 
(GNG) is an SOM-based algorithm that learns complex relationships 
without prior knowledge. GNG uses competitive Hebbian learning 
(CHL) to form topology without being restricted in k-dimensional 
structures. This method has gained considerable attention due to its 
flexibility in complex pattern recognition and has been successfully 
utilized as a multipurpose tool in various fields of engineering, such as 
robotics (Viejo et al., 2014), medicine (Aljobouri et al., 2018), the 
clothing industry (Jimeno-Morenila et al., 2016), hydrology (Abdi et al., 
2017), and computer science (e.g., Shi et al., 2014; García-RodríGuez 
et al., 2012; Santos and Nascimento, 2016), but there is a gap in the use 
of GNG for the clustering and assessment of groundwater quality and 
quantity variables. 

On the other hand, since every individual clustering method can 
extract particular features from a dataset and there is no agreement 
among researchers about the superiority of a specific method (Table1), 
finding an appropriate clustering method is a challenging task. Addi-
tionally, the homogeneous formation of clusters is a sensitive process in 
which the cluster ensemble can effectively perform and benefit from the 
advantages of different clustering methods simultaneously (e.g., see 
Mohammadi et al., 2008; Azimi et al., 2009; Mimaroglu and Erdil, 2011, 

Table 1 
Details of the reviewed papers, where the individual clustering methods were 
utilized.  

Clustering 
method 

Title Findings Author 
(year) 

HCA Groundwater quality 
assessment in a hyper- 
arid region of 
Rajasthan, India. 

Cluster analysis by 
HCA proved to be an 
excellent tool to 
ascertain the spatial 
similarity between the 
contributing variables. 

Bhakar and 
Singh, 2019 

HCA Groundwater quality 
assessment using 
pollution index of 
groundwater (PIG), 
ecological risk index 
(ERI) and hierarchical 
cluster analysis (HCA). 

The efficiency and 
efficacy of PIG, ERI, 
and HCA in the 
drinking water quality 
assessments have been 
achieved. 

Egburi, 2020 

HCA Hydrogeochemical 
processes regulating the 
spatial distribution of 
groundwater 
contamination, using 
pollution index of 
groundwater (PIG) and 
hierarchical cluster 
analysis (HCA). 

The study suggests 
strategic management 
measures for 
sustainable 
development of 
groundwater resources. 

Subba Rao 
and 
Chaudhary, 
2019 

K-Means Cluster analysis for 
groundwater 
classification in multi- 
aquifer systems based 
on a novel correlation 
index. 

Compared to the 
classical 
hydrogeological 
models and graphical 
approaches, the 
proposed methodology 
presents robust 
validation and results. 

Fabbrocino 
et al., 2019 

K-Means 
and SOM 

Characterization of 
water quality 
conditions in the Klang 
River basin, Malaysia 
using self organizing 
map, and k-means 
algorithm. 

The application of a 
combination of SOM 
and K-Means 
approaches extracted 
valuable information 
from the data for 
holistic river basin 
management. 

Sharif et al., 
2015 

SOM Hydrogeochemical 
characterization and 
quality assessment of 
groundwater using self- 
organizing maps in the 
Hangjinqi gasfield area, 
Ordos basin, NW China. 

The results of the study 
can be used to 
investigate the 
seasonal variation of 
hydrogeochemical 
characteristics and 
assess water quality 
accurately. 

Wu et al., 
2021 

SOM Spatiotemporal 
variation of water 
pollution near landfill 
site: Application of 
clustering methods to 
assess the admissibility 
of LWPI. 

The results showed that 
SOM could represent 
more precise results 
than principal 
component analysis 
(PCA) due to the ability 
to diagnose nonlinear 
patterns. 

Baghanam 
et al., 2020 

SOM Self-organizing map 
clustering technique for 
ANN-based 
spatiotemporal 
modeling of 
groundwater quality 
parameters. 

Spatial clustering via 
SOM was shown to be 
useful in improving 
FFNN-based modeling 
of groundwater quality 
parameters. 

Nourani 
et al., 2016 

GNG Regional frequency 
analysis using growing 
neural gas network. 

The results of the 
heterogeneity measure 
based on the L- 
moments approach 
reveal that only the 
GNG algorithm 
successfully yields 
homogeneous sub- 
regions in comparison 
to the K-Means, FCM, 
SOM, and WARD 
methods. 

Abdi et al., 
2017  
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Mimaroglu and Erdil, 2013). Combining multiple clustering via simi-
larity graph (COMUSA) is a flexible cluster ensemble method that cre-
ates a similarity graph by utilizing the evidence accumulated from the 
different clustering methods. COMUSA can find arbitrarily shaped 
clusters and is not affected by cluster size, noise, or outliers, leading to 
more homogeneous clusters (Mimaroglu and Erdil, 2011). There are still 
no studies that have applied the COMUSA algorithm in the general fields 
of hydrology and water resources. 

The present study attempted to identify spatiotemporal groundwater 
quantity and quality changes using ensemble clustering based on the 
similarity graph method for the Ghorveh-Dehgolan Plain (GDP), located 

in western Iran, where overpumping and overuse of fertilizers and 
pesticides for irrigational purposes have placed significant pressures on 
groundwater resources of the GDP. This method was applied to combine 
the results of three practical clustering algorithms (commonly used K- 
Means method, agglomerative hierarchical method of Ward, and GNG as 
an unsupervised ANN-based method) to extract the most homogeneous 
structures of clusters from groundwater variables of the GDP. After 
recognizing existing groundwater quality and quantity patterns, the 
Piper plot, US Salinity Laboratory Staff (USSL) diagrams, and PIG 
evaluated the quality of patterns to investigate groundwater suitability 
for drinking and irrigation purposes. 

Fig. 1. Study area: Ghorveh Dehgolan Plain, Iran: (a) location map and positions of groundwater level monitoring wells and groundwater quality monitoring wells, 
(b) distribution of aquifer recharge, (c) subsidence in the northwestern part of GDP, (d) Dehgolan’s dried up river, (e) water quality assessment laboratory, (f) 
leachate footprint in the eastern part of GDP, (g) quality monitoring well 12 in GDP. 
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2. In situ experimental investigation on the study area and data 
analysis 

The GDP is located in western Iran within the longitude from 47◦ 38′

52′′ to 48◦ 06′ 03′′ east and latitude from 35◦ 02′ 22′′ to 35◦ 30′ 54′′

north. The climate of the examined area is semiarid, while during 
winter, the average minimum temperature is 5.5 ◦C, and the region 
experiences a daily maximum temperature of 36 ◦C in the summer. 
Moreover, the average annual precipitation in this area is 345 mm. This 
paper used data of 49 groundwater level monitoring wells in the plain 
for monitoring monthly GWL and 41 groundwater quality monitoring 
wells, measured twice a year, for monitoring geochemical variables 
provided by the Kurdestan Regional Water Authority (KRWA, 2017). 
The location map and positions of wells of the GDP are shown in Fig. 1a. 
The main recharge sources of groundwater of GDP are precipitation and 
subsurface flow from surrounding highlands and rivers (Fig. 1b), while 
the semiarid climate with low precipitation and surface water potential 
limit the recharge process of the aquifer. In addition, irrigation water 
infiltrates back to the groundwater system. The northwestern parts of 
the plain have experienced extreme subsidence due to the high amounts 
of groundwater depletion (Fig. 1c). Besides, anthropogenic activities 
have impacted the plain, which drained a large part of surface water 
resources such as the Dehgolan river (Fig. 1d). Groundwater samples of 
the GDP were tested in a laboratory to examine the physicochemical 
variables to study the water quality (Fig. 1e). The plain also has hygienic 
problems because there is no sanitary landfill in the region (Fig. 1f), 
resulting in leachate penetration into groundwater. There are several 
observation wells in the plain to explore and collect water samples for 
studying the groundwater quantity and quality (Fig. 1g). 

In this study, four time steps with ten-year intervals were selected to 
investigate long-term trends of data sets. Due to the possibility of 
extreme values in a 1-year dataset, the average of three-year datasets for 
each time step was selected to avoid possible bias and anomalies. A 
statistical summary of the groundwater parameters is presented in 
Table 2. 

The unconfined alluvial aquifer of GDP covers an area of approxi-
mately 1270 km2 in Kurdistan Province. Based on pumping tests carried 
out in the plain, the transmissivity of the GDP aquifer varies between 50 
and 1492 m2/d. The range of hydraulic conductivity of the aquifer is 
from 34 to 90 m/day. The average value of the GDP aquifer storage 
coefficient is about 1.7%. GWLs vary from 1740 m to 1961 m above the 
mean sea level. The GDP is located in the Sanandaj-Sirjan structural zone 

of Iran. The Sanandaj-Sirjan is identified as a region of polyphase 
deformation, the latest reflecting the collision of Arabia and Eurasia and 
the subsequent southward propagation of the fold-thrust belt. Therefore, 
the geology of the study area is characterized by geologic structures and 
fracture systems. Geological examinations have shown that this area 
primarily contains limestone-dolomite rocks and Quaternary units, the 
most common of which include alluvial-plain deposits, alluvial terraces, 
alluvial-fan deposits, calcareous sandstone, and travertine. Notably, 
small areas with dolomite and limestone were discovered in the central 
and western parts of the plain, which are susceptible to pollution caused 
by transportation on land surfaces, which flow into the aquifer (karst 
system) to a large extent (Rahmati et al., 2015). Fig. 2 also contains 
geological cross-sections indicating possible structures in the GDP. Fine- 
grained and coarse-grained units are repeated alternately over the plain 
and do not follow a specific order regarding the condition of borehole 
logs of exploratory wells in GDP. Fig. 3 shows some samples of borehole 
logs in the western part (L1, L2, and L3), central part (L4, L5, and L6), 
and eastern part (L7, L8, and L9) of the GDP, illustrating the direct 
relationship between the increase in depth and the coarse-grained units. 
Hydrogeological properties of the aquifer layers and their thickness 
were estimated through 340 geoelectrical soundings and 15 geo-
electrical profiles provided by KRWA (KRWA, 2017); see Fig. 4, repre-
senting three of them. 

Fig. 4a illustrates the western section (i-i′), including four layers. The 
first layer shows the surface layer with a thickness of 15–40 m con-
taining alluvial deposits consisting of silt, clay, sand, and gravel. The 
samples of boreholes show the soil textures of the first layers of the i-i′

section (Fig. 3b). The second layer thickness varies from 25 to 50 m, 
forming from the alternation of medium-grained alluvial at the top and 
coarse-grained alluvial deposits at the deeper depth. The main texture of 
the third layer is fine-grained alluvial deposits with an average depth of 
50 m. The third layer with a lower potential of discharge contains 
groundwater. The fourth layer is the bedrock of this profile, referring to 
the Terissic-Jurassic period, and contains dark grey crystalline limestone 
with interbedded metavolcanic rocks, slate, phyllite, conglomerate, and 
crystalline limestone. Geophysical investigations divided the central 
profile (ii-ii′) into three layers (Fig. 4b). The first layer with a thickness 
range of 5–30 m is an alternation of surface alluvial deposits with high 
percents of gravel. The second layer thickness reaches 200 m, in which 
the alluvial deposits with high percents of gravel were recognized. The 
last layer as bedrock contains granite, amphibole granite, diorite, 
marble, and crystalline dolomite. In some areas of the ii-ii′ cross-section, 

Table 2 
Statistics of GWL and physicochemical variables data for the GDP.  

Time step Variable GWL K+ Na+ Mg2+ Ca2+ Cl− HCO3
− CO3

2− NO3
− SO4

2− TH EC pH TDS 

1 (1988–1990) Unit m mEq/ 
L 

mEq/ 
L 

mEq/ 
L 

mEq/ 
L 

mEq/ 
L 

mEq/L mEq/ 
L 

mEq/ 
L 

mEq/ 
L 

mg/L µZ/cm  – mg/L 

Max 1958 0.21 2.22 2.09 4.4 0.64 6.26 0.11 1.24 1.36 244 685  8.28 444 
Min 1769 0.01 0.25 0.76 2.15 0.16 2.65 0 0.12 0.21 122 312  7.9 200 
Average 1844 0.03 0.66 1.05 3.02 0.32 3.8 0.05 0.34 0.59 172 465  8.13 298 
SD 41.30 0.04 0.49 0.28 0.54 0.11 0.74 0.03 0.21 0.30 36.59 90.5  0.09 58.65 

2 (1997–1999) Max 1959 0.36 2.92 3.09 7.66 0.81 10.08 0.1 1.24 2.49 537.3 1046.3  8.26 680.25 
Min 1770 0.01 0.22 0.63 1.89 0.15 2.45 0 0.12 0.01 133 311.3  7.45 199.3 
Average 1845 0.03 0.76 1.24 3.40 0.34 4.31 0.01 0.35 0.42 232.4 484.7  8.05 313.2 
SD 41.28 0.06 0.59 0.47 0.93 0.18 1.24 0.02 0.19 0.59 67.32 138.3  0.16 90.18 

3 (2006–2008) Max 1959 0.17 3.26 3.91 5.99 0.87 7.83 0.73 1.292 2.87 451.2 981.7  8.24 643.67 
Min 1762 0.01 0.23 0.66 2.04 0.13 2.14 0 0.12 0.18 142.7 306  6.78 194.6 
Average 1833.5 0.03 0.86 1.19 3.20 0.29 3.83 0.08 0.35 0.73 219.9 481.4  7.95 308.18 
SD 43.88 0.03 0.73 0.64 0.98 0.18 1.38 0.12 0.19 0.72 77.4 157.3  0.30 102.38 

4 (2015–2017) Max 1957 0.57 6.78 8.39 15.39 3.25 23.38 0.22 1.37 4.4 1189 2475.2  8.26 1658.2 
Min 1736 0.01 0.27 0.44 1.74 0.08 2.59 0 0.1 0.09 109 296.6  6.23 188.8 
Average 1820 0.04 1.17 1.33 3.58 0.36 4.84 0.02 0.37 0.57 246 556.3  7.82 359.80 
SD 48.92 0.09 1.18 1.44 2.55 0.51 3.92 0.04 0.22 0.77 196 388  0.44 261.33 

Whole period 
(1988–2017) 

Max 1961 0.343 3.431 3.963 9.314 1.514 13.58 0.563 8.053 4.752 666 1312  8.52 863 
Min 1740 0.007 0.244 0.625 1.955 0.106 0 0 0.119 0.113 138 306.2  6.685 195 
Average 1839 0.029 0.853 1.219 3.289 0.349 4.115 0.042 0.412 0.621 225 499.2  7.99 321 
SD 48.98 0.101 0.262 0.256 0.382 0.193 0.368 0.128 0.115 0.309 24.903 65.117  0.110 67.47  
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the bedrock is not detected due to the existence of a fault creating a 
significant disturbance in the lower alluvium of the aquifer. The first 
layers of the eastern cross-section (iii-iii′, Fig. 4c) consist of alternations 
of fine-grained alluvial deposits with high percents of silt, clay, and 
gravel (see borehole logs of Fig. 3d). The bedrock of the eastern part of 
the GDP’s aquifer has low resistivity representing layers such as argil-
laceous, marl, and sandy marl. It is worth mentioning that the low 
groundwater quality of the eastern part of GDP could affect and disturb 
the results of geophysical investigations. 

In order to define groundwater flow directions and rates through the 
aquifer, the interpolation map of GWL was created regarding the 
permeability of the aquifer materials. The Kriging algorithm was utilized 
to create an interpolation map and generate contour maps (Fig. 5). Each 
contour, or equipotential, represents a line of equal hydraulic head. It is 
clear from Fig. 5 that the general groundwater flow direction is from the 

west and southwestern regions of the plain to the east and southeastern 
regions. Also, the southern parts of the aquifer have greater hydraulic 
gradients and the location of equipotential lines represent a lower 
groundwater hydraulic gradient in the eastern part of GDP. 

3. Methodology 

Utilizing the proposed methodology of this study (see Fig. 6), 
groundwater quantity and quality variables of the GDP were first 
patterned using three individual clustering methods: K-Means, Ward, 
and GNG; then, the cluster ensemble technique was used as a post-
processing method to form the most homogeneous clusters. Addition-
ally, before assessing the conditions of clusters, cropland expansion was 
visualized by using the normalized difference vegetation index (NDVI) 
data of all time steps to show its impacts on groundwater on the GDP. 

Fig. 2. Geological map of the GDP: (a) plan, (b) cross-section in the A-A′ direction, (c) cross-section in the B-B′ direction, and (d) cross-section in the C-C′ direction.  
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Finally, spatiotemporal analyses of the patterns obtained were con-
ducted by comparing groundwater level (GWL), PIG, Piper, and USSL 
diagrams. 

3.1. K-Means clustering method 

K-Means is one of the clustering methods that has shown decent 

performance in hydrological research. K-Means classifies inputs into 
clusters in which the distance between the members and the centroid of 
clusters is at a minimum degree (MacQueen, 1967). Finally, this algo-
rithm aims at minimizing an objective function given by: 

Fig. 3. Borehole logs: (a) logs positions and digital elevation model, (b) logs of the western part (L1, L2, and L3), (c) logs of the central part (L4, L5, and L6) and (d) 
logs of eastern part (L7, L8, and L9) of GDP. 
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Fig. 4. Hydrogeological cross-sections: (a) western, (b) central, and (c) eastern hydrogeological cross-sections of GDP.  
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J =
∑N

i=1

∑K

j=1
rnk(‖xi − vj‖)2 (1)  

where N is the number of data points, K is the number of clusters, 
‖xi − vj‖ is the Euclidean distance between xi and vj, rnk ∈ {0,1} is in-
dicator variable where k describing the data point xi is assigned to which 
of the K clusters, x is the set of data points, and v is the set of centres. 

3.2. Ward’s hierarchical clustering method 

Hierarchical cluster analysis has been developed as a flexible data- 
grouping application in scientific fields. This method first forms clus-
ters with a single member, then these clusters are merged to create 
clusters containing two members, and this process continues until it 
forms a final cluster consisting of all members. New clusters are created 
based on the minimum variance of each step (for more details about the 
hierarchical clustering method, see Subba Rao and Chaudhary, 2019; 
Egbueri, 2020). 

3.3. Growing neural gas (GNG) network 

GNG is one of the SOM-based algorithms that, as an unsupervised 
learning method, further utilizes a growing mechanism for gradual 
adaptation. To create a network topology without being restricted in a k- 
dimensional structure, GNG utilizes the CHL growth approach (Fritzke, 
1995). Linking neurons form the neighbourhood network, which 
structures in each iteration by first- and second-winner neurons at 
random positions and associated reference vectors. Then, GNG gener-
ates a random input related to a density function, and finding the nearest 
neurons (winner neurons), continues to increase the age of all edges. The 
insertion of connections between the two closest neurons to the 
randomly generated input patterns establishes an induced Delaunay 
triangulation in the input space. The elimination of connections di-
minishes the edges that no longer comprise the triangulation. This is 
performed by eliminating the connections between neurons that are no 
longer close or that have nearer neurons. Finally, the accumulated error 
allows the identification of those zones in the input space where it is 
necessary to increase the number of neurons to improve the mapping 
(Jimeno-Morenilla et al., 2013). 

The GNG-learning algorithm steps are as follows (Fig. 7):  

i. Start with neuron a and neuron b at random positions in which wa 
and wb are their associated reference vectors.  

ii. Generate a random input time series related to a density function 
P(ξ).  

iii. Find the nearest neuron s1 (winner neuron) and the second 
nearest neuron s2.  

iv. Increase the age of all edges emanating from s1 to its neighbours.  
v. Increase the local error of s1 by using the Euclidean distance 

between two vectors as Δerror(s1) = ‖W(s1)− ξ‖
2 (2)  

vi. Relocate s1 and its topological neighbours towards ξ by εw and εn 
(learning rates), respectively, of the total distance (n shows all 
direct neighbours of s1): 

ΔWs1 = εw(ξ − WS1 ) (3)  

ΔWsn = εn(ξ − WSn ) (4)    

vii. If there exists an edge between s1 and s2, then set zero as their age.  
viii. Remove the edges larger than amax. If this results in isolated 

neurons (without emanating edges), remove them as well.  
ix. For every certain number of inputs generated, insert a new 

neuron.  
x. Decrease all error variables by multiplying them with a constant 

β.  
xi. Delete outliers based on the network edge length average.  

xii. If the stopping criterion is not yet achieved, proceed to step 2.  
xiii. Reorder network neurons using neighbourhood structure. 

Unlike classical clustering algorithms, GNG has a flexible and 
adaptable algorithm that makes it practical for learning the topology of 
high-dimensional datasets. The GNG algorithm was written and imple-
mented in MATLAB R2018b. 

3.4. Combining multiple clusterings via similarity graph (COMUSA) 

Cluster ensemble methods aim to combine multiple clustering algo-
rithm results to produce a better clustering outcome than those from 

Fig. 5. Groundwater flow system of the GDP.  
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individual clustering methods in terms of consistency and quality. 
Combining multiple clustering methods requires reusing pre-existing 
knowledge, employing distributed data-mining methods, and produc-
ing a final clustering with better overall quality. Various solutions for 
combining multiple clustering methods have been presented, such as 
genetic, hybrid bipartite graph formulation, hypergraph partitioning, 
and meta-clustering algorithms (Alqurashi and Wang, 2019). There is no 
single algorithm that is universally used, and there are no generally 
agreed upon criteria for selecting the most suitable ones. In this case, it is 
better to apply the one with the most simplicity and efficiency. 

With this aim, the present study attempted to combine the three 
clustering methods in groundwater assessment using the similarity 
graph method via the following steps (Mimaroglu and Erdil, 2011): 

where D is a dataset: 
π(D) = {C1.C2.∙∙∙.Cπ(D)} is an individual clustering of D; Ci is a 

cluster of π(D); π(D)={π1(D), π2(D), …,πm(D)} is a set of the best results 
of different clustering methods. 

The following function forms a co-association (similarity) matrix 
(SM): 

coassoc(i.j) = votesi.j (5)  

where votesi.j is the number of times that members i and j were in the 
same clusters. This information of members produces the SM. The sim-

ilarity graph is an undirected and weighted graph that displays the SM. 
In a similarity graph, SG=(D,E), and each edge (di.dj) has a mark asso-
ciated with the SMij in the co-association matrix. df (di) is the degrees of 
freedom, and sw(di) is the sum of weights of edges incident to di. The 
attachment index (Eq. (6)) is for initiating new clusters. A member with 
the highest attachment index is selected as an initial member (pivot). 

attachment(di) =
sw(di)
df(di)

(6) 

Initially, each cluster is a singleton, and the pivot object expands the 
cluster by considering all immediate neighbours. A neighbour is 
included in a pivot’s cluster if it is most similar to the pivot. Once a 
neighbour is included, it is marked and then acts like a pivot by 
considering its immediate neighbours for further expansion. Each clus-
ter is expanded by its neighbours as explained previously. Extension of a 
cluster comes to an end if pivots of a cluster cannot add any other objects 
into the cluster. COMUSA starts a new cluster by choosing a new pivot if 
there are unmarked objects in a dataset. COMUSA halts when all objects 
are marked (for more details, see Mimaroglu and Erdil, 2011). Note that 
the COMUSA algorithm was written and implemented in MATLAB 
R2018b. 

Fig. 6. Schematic diagram of the proposed methodology for groundwater quantity and quality assessment in four time steps.  
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3.5. Cluster validity index 

The silhouette coefficient (SC) is measured to assess and compare the 
performance of clustering methods. To calculate the SC for clustering 
structures, first, the Si for all members is calculated as a silhouette index 
(Rousseeuw, 1987): 

Si =
b(i) − a(i)

max{a(i).b(i) }
(7)  

a(i) is the average Euclidean distance between member i and all mem-
bers of cluster A, and b(i) is the least average dissimilarity of member i to 
the members within a cluster distinct from cluster A. Based on this 
formula, it infers that − 1 ≤ Si ≤ 1. Therefore, if Si is adjacent to 1, it may 
be concluded that the Sith feature vector has been allocated to a proper 
cluster. Conversely, when Si is adjacent to − 1, it may be inferred that the 
Si th feature vector has been classified incorrectly. When Si is almost 
zero, it indicates that the Si th feature vector is located similarly far away 
from two clusters. 

While n is the number of members, and k is the number of clusters, 
the overall quality of a clustering method and the optimal number of 
clusters can be validated using the average silhouette width of the entire 
dataset for each number of clusters as: 

SC = max
k

(
1
n
∑n

1
Si

)

(8) 

When average silhouette values were calculated for desired numbers 
of clusters (k ∈ {2,3,⋯, n}) the maximum average silhouette is SC 
representing the optimal number of clusters. A higher SC illustrates 
better discrimination among the clusters. 

3.6. Pollution index of groundwater (PIG) 

Subba Rao (2012) proposed the PIG to quantify pollution activity 
originating from anthropogenic and geogenic sources in which the 
relative effect of single chemical variables on the general chemical 
quality of groundwater can be identified by using only a simple value 
(Subba Rao, 2012). 

Suitability assessment of drinking water quality by using the PIG is 
taken in five steps:  

i. Estimation of the relative weight (Rw) (on a scale of 1–5) of the 
analyzed variables based on their significance in the water quality 
assessment and relative impact on human health (Table 3). 

ii. Calculation of the weight parameter (Wp) to assess its relative as-
sociation with the groundwater quality (Table 3) is as follows: 

WP =
RW
∑
RW

(9)    

iii. The status of concentration (Sc) is measured by dividing each of 
the water quality variable contents (C) by its respective drinking 
water quality standard limits (Ds) as: 

Sc =
C
Ds

(10) 

Table 3 presents the status of the relative influence of individual 
physicochemical variables on overall groundwater quality by using Rw, 
Wp, and Ds. 

iv. The overall groundwater quality (Ow) is calculated by multi-
plying the Wp by the Sc. 

OW = Wp × Sc (11)    

v. The summation of all Ow values per sample gives the PIG as: 

PIG =
∑

OW (12) 

The PIG values reveal the contributions of all analyzed hydro-
chemical variables of each groundwater sample. It is noteworthy that in 

Fig. 7. Flow chart of GNG-learning algorithm.  

Table 3 
Relative weight, weight variable, and drinking water quality standard limits 
(Subba Rao and Chaudhary, 2019).  

Variable Units RW Wp Ds 

pH  5 0.128 7.5 
TDS mg/L 5 0.128 500 
TH  mg/L 3 0.077 300 

Ca2+ mg/L 2 0.051 75 

Mg2+ mg/L 2 0.051 30 

Na+ mg/L 4 0.103 200 

K+ mg/L 1 0.026 12 
HCO−

3  mg/L 3 0.077 300 
Cl− mg/L 4 0.103 250 

SO2−
4  mg/L 5 0.128 200 

NO−
3  mg/L 5 0.128 45 

∑
sum   39 1 –  
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this study, in addition to the variables in Table 3, the sodium absorption 
ratio (SAR) and electrical conductivity (EC) parameters also contributed 
to the evaluation of groundwater suitability for irrigational purposes. 

4. Results and discussion 

Assessment of hydrological phenomena has complicated procedures 
where analysis requires powerful applications of enhanced methods and 
to that end, in this study, first, to explore and assess the spatiotemporal 
changes of groundwater quantity and quality on the GDP, the study was 
conducted over four time steps. The first, second, third, and fourth-time 
steps are the averages of the datasets for the 1988 to 1990, 1997 to 1999, 
2006 to 2008, and 2015 to 2017 limits, respectively. The averages of 
three years as representative of the time steps were selected to avoid 
possible bias and anomalies that may occur in a one-year dataset. The 
groundwater quantity and quality datasets of these four time steps were 
first clustered separately by individual clustering methods, and the 
optimal results were selected based on the SC. With the aim of enhancing 
the structure of clusters, the results of individual clustering methods 
were then combined through a cluster ensemble algorithm as a post-
processing step. Finally, the spatiotemporal changes of clusters were 
evaluated via the assessment of the SC, GWL, PIG, and groundwater 
quality diagrams. 

4.1. Results of individual clustering methods 

Individual clustering algorithms, including linear (K-Means), hier-
archical (WARD), and self-organizing neural network (GNG) clustering 
methods, were applied to the four time step datasets, and the optimal 
number of clusters (NC) was chosen by comparing the SC from 2 to 10 
clusters after the training process. The results of individual clustering 
methods are shown in Table 4 for GWL and physicochemical variables 
(using normalized data). 

As shown in Table 4, in all time steps, the SC indicates better per-
formance for the GNG clustering method compared with the other in-
dividual clustering methods. The main reason for the superiority of GNG 
against WARD and K-Means is the way that this flexible method can 
drive its nodes through the topology of inputs. In contrast, the rigid 
structure of the other methods (K-Means and WARD) limits their 
applicability in dealing with complex datasets. Additionally, the adap-
tation ability and optimized growth of GNG lead to a desired resolution 
of the clustered networks. 

Based on the SC, results higher than 0.5 show well-structured clus-
ters, and those lower than 0.5 show that samples are structured poorly. A 
comparison of SC values in Table 4 indicates the satisfactory perfor-
mance of all clustering methods in GWL clustering. In contrast, the SC 
values of qualitative clustering via K-Means and WARD methods illus-
trate inadequate structures in some time steps. These differences be-
tween the SC of quantitative and qualitative clustering might be related 
to the number of input variables. For GWL clustering, only spatial pa-
rameters (UTM) and groundwater level were imposed on clustering al-
gorithms, while in qualitative clustering in addition to GWL variables, 
13 physicochemical variables of groundwater samples were utilized. 

The high-dimensional dataset of qualitative variables and the existence 
of nonlinear and complex relationships among variables caused unsat-
isfactory results in the K-Means and WARD methods. Under the same 
conditions, the GNG method obtained acceptable results in all time steps 
because of its ability to recognize complex relationships. 

After applying individual clustering techniques, a cluster ensemble 
method was applied to improve the clustering performance as a post-
processing step. 

4.2. Results of the cluster ensemble 

Regarding the fact that there is no agreement regarding the superi-
ority of specific clustering methods and the optimal number of clusters, 
in this study, the best results of individual clustering methods were 
combined via the similarity graph (COMUSA) method, which can effi-
ciently find the natural number of clusters (Mimaroglu and Erdil, 2011). 
With the similarity matrix formation for all time steps, the attachment 
index for all members was calculated. The highest amount was randomly 
selected based on the preliminary nodes of the clustering operation. 
Then, the correlation coefficient of other members related to the pre-
liminary nodes was measured to form new clusters. This practice was 
continued until all members were settled in their clusters. COMUSA can 

Table 4 
Results of individual clustering methods based on the SC in all time steps.   

Clustering Method Time Step   

1 2 3 4   

NC SC NC SC NC SC NC SC 

Groundwater Level WARD 2  0.57276 2  0.60073 4  0.65679 8  0.61331 
K-Means 2  0.60028 3  0.65046 4  0.65018 7  0.62075 
GNG 3  0.61366 3  0.65996 5  0.65936 7  0.62161 

Quality Variables WARD 3  0.47934 3  0.47385 2  0.71476 3  0.64390 
K-Means 3  0.49934 2  0.47459 2  0.71597 3  0.68439 
GNG 3  0.50835 3  0.50444 2  0.72203 3  0.71832  

Table 5 
Results of the cluster ensemble of all time steps for GWL.  

Time 
Step 

SC Members of cluster 

1 0.64049 W1, W2, W3, W4, W5, W6, W10, W16, W17, W20, W22, 
W26, W28, W29, W30, W31, W32, W34, W36, W38, W39, 
W40, W41, W42 
W7, W8, W9, W11, W12, W13, W14, W15, W18, W19, W21, 
W23, W24, W25, W43, W44, W45, W46, W47, W48, W49 
W27, W33, W35, W37 

2 0.67771 W1, W2, W3, W4, W5, W6, W10, W17, W22, W26, W28, 
W29, W30, W31, W32, W34, W36, W38, W39 
W7, W8, W9, W11, W12, W13, W14, W15, W16, W18, W19, 
W20, W21, W23, W24, W25, W27, W40, W41, W42, W43, 
W44, W45, W46, W47, W48, W49 
W33, W35, W37 

3 0.67104 W1, W2, W6, W17, W20, W27, W31 
W3, W4, W5, W7, W10, W16, W22, W26, W28, W29, W30, 
W32, W34, W36, W38 
W8, W9, W11, W12, W13, W14, W15, W18, W19, W21, 
W23, W25 
W39, W40, W41, W42, W43, W44, W45, W46, W47, W48, 
W49 
W33, W35, W37 

4 0.65860 W1, W3, W10 
W2, W6, W17, W20, W27 
W4, W5, W7, W11, W16, W22, W24, W28 
W8, W9, W12, W13, W14, W15, W18, W19, W21, W23, 
W25 
W29, W30, W32, W34, W36, W38 
W33, W35, W37 
W39, W40, W41, W42, W43, W44, W45, W46, W47, W48, 
W49 

*The underlined letters represent the centroid well of each cluster. 
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find shapes of clusters and can assign members to a cluster if they are 
most similar to a pivot (high attachment values) in that cluster. The 
growth of clusters is based on immediate neighbours of pivots. If a 
member enters a cluster, it receives a label as a new pivot to continue the 
expansion process of the cluster until all members are labelled, then 
COMUSA halts. Information on the quantitative and qualitative patterns 
of the cluster ensemble is presented in Tables 5 and 6. Additionally, as an 
example of generating a cluster ensemble using COMUSA, the final GWL 
clusters of the fourth-time step are shown in Fig. 8. 

The red dotes in Fig. 8 highlight the preliminary pivot objects of all 
clusters, which indicate high attachment values, high sum of weights, 
and low degrees of freedom that indicate they are strongly connected 
somewhere. After estimating the pivot object, the expansion of each 
cluster is continued by considering all their immediate neighbours, 
shown with black circles (Fig. 8). 

Furthermore, the Euclidean distance criterion was then calculated to 
determine the prominent (centroid) well of each cluster as the best 
representation of the groundwater quantity and quality clusters. The 
determined central wells of clusters are highlighted in the third column 
in Tables 5 and 6. 

After recognizing the new patterns of GWL and physicochemical 
variables, the SC was computed for all time steps. A comparison of re-
sults in Table 4 with results in Tables 5 and 6 indicates that the appli-
cation of the cluster ensemble could successfully enhance the 
performance of individual clustering methods for groundwater quality 
and quantity up to 12% and 20%, respectively. It is worth mentioning 
that an increase in the SC, even in small amounts, can be very effective in 
evaluating groundwater conditions. In areas where the number of 
observation wells is low, belonging to an appropriate cluster is crucial in 
making the decision about a member. 

According to Tables 5 and 6, the centroid wells were almost the same 
until the number of clusters changed. It is noteworthy that the centres of 
the preliminary clusters have continued to maintain their position in 
later time steps, which indicates the suitability of the centroid wells to 
consider their quantitative and qualitative conditions as the best 
representative of clusters. 

To provide a broader perspective on the impacts of anthropogenic 
activities on groundwater patterns, the areas of cropland expansion 
were assessed for all time steps. Additionally, the NDVI dataset of each 
time step was sketched to see the spatiotemporal changes in cropland 
and their impacts on the groundwater conditions on the GDP. 

Table 6 
Results of the cluster ensemble of all time steps for physicochemical variables.  

Time 
Step 

SC Members of cluster 

1 0.55604 W1, W2, W5, W6, W7, W8, W9, W10, W13, W14, W15, W16, 
W17, W18, W19, W20, W21, W22, W23, W25, W27, W28, 
W31, W32, W34, W35, W36, W37, W38, W39, W40 
W3, W11, W12, W26, W29, W33 
W4, W24, W30, W41 

2 0.56881 W1, W2, W4, W5, W6, W7, W8, W9, W10, W11, W13, W14, 
W15, W16, W17, W18, W19, W20, W21, W22, W23, W25, 
W26, W28, W29, W30, W31, W32, W34, W35, W36, W37, 
W38, W39, W40 
W3, W12, W24, W27, W33, W41 

3 0.76809 W1, W2, W4, W6, W7, W8, W9, W10, W13, W14, W15, W16, 
W17, W18, W19, W20, W21, W22, W23, W24, W25, W27, 
W29, W30, W31, W32, W33, W34, W35, W36, W37, W38, 
W39, W40 
W3, W11, W12, W26, W28, W41 

4 0.73977 W1, W2, W3, W4, W6, W7, W8, W9, W10, W13, W14, W15, 
W16, W17, W18, W19, W20, W21, W22, W23, W24, W25, 
W27, W29, W30, W31, W32, W33, W34, W35, W36, W37, 
W38, W39, W40, W41 
W11, W26, W28 
W12 

*The underlined letters represent the centroid well of each cluster. 

Fig. 8. Similarity graphs using the cluster ensemble method for GWL using COMUSA for the last-time step: (a) cluster 1, (b) cluster 2,…, and (g) cluster 7 (pre-
liminary pivot objects). 
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4.3. Assessment of cropland areas 

It is noteworthy that people living on the GDP depend on commod-
ities produced by irrigated agriculture, and the GDP is one of Iran’s 
potato production bases where farmers apply large amounts of water, 
fertilizers, and pesticides to agricultural soil to achieve a high produc-
tion. Therefore, before assessing the quantitative and qualitative con-
ditions of groundwater, having a broader perspective on cropland areas 
on the GDP is a valuable step in understanding the relationship between 
groundwater problems and cropland expansion on the GDP. Considering 
that the primary groundwater consumption on the GDP is for irriga-
tional purposes, there can be a significant relationship between cropland 
expansion and groundwater problems which also has been reported for 
other regions in previous studies (e.g., Foroumandi et al., 2022). To this 
end, remote sensing (RS) can help visualize cropland area changes. 
Ground covers have a defined spectral signature (spectral reflectance 
patterns) compressed into spectral vegetation indices because of their 
ability to distinguish different vegetated surfaces. The NDVI is one of the 
most well-known vegetation indices and involves the ratio of the dif-
ference and the sum between near-infrared and red bands. This index 
can distinguish vegetation from other soil coverings (Nourani et al., 
2021; Foroumandi et al., 2021). 

To take into account the contribution of agricultural prosperity and 
its impacts on the quantitative and qualitative conditions of 

groundwater, the Landsat-derived NDVI maps related to July 1989, 
1998, 2007, and 2016 (the spatial resolution size of 30 m for each pixel 
of Landsat-5 and Landsat-8 images) were sketched on the Google Earth 
Engine (GEE) cloud computing platform. The NDVI maps for all four 
time steps in which the darker green colours in pixels express the higher 
values of the NDVI, and the centroid wells of GWL and groundwater 
quality clusters are shown in Fig. 9. 

According to reports from the agricultural organization of Kurdistan 
Province (Table 7), an incremental increase in irrigated cropland areas 
has occurred over time, which has almost more than doubled in the last- 
time step. Additionally, in the western half of the GDP, the irrigated 
cropland area increased over 90 percent between the second and third- 
time steps. These changes are clearly discernible among the maps in 
Fig. 9. 

The difference in the area of irrigated cropland from 1988 to 2017 
was 24,675 ha (Table 7). The most significant increase in irrigated 
cropland area occurred between the second and third-time steps 
(approximately 11194 ha). In comparison, the rainfed cropland area 
decreased by 10,958 ha during this time, which shows an increasing 
tendency among local farmers to cultivate irrigated crops. This crop 
pattern has shifted to cultivating water-intensive crops such as potato 
and forage crops, which is another influential factor affecting ground-
water conditions on the GDP. The comprehensive assessment of crop-
land area changes and their impacts on groundwater status is performed 
simultaneously with trend analysis of clusters in the following 
subsections. 

4.4. Trend analysis of GWL 

The cluster ensemble of the GWL could recognize three patterns for 
both the first and second-time steps and could extract five and seven 
patterns for the third and fourth-time steps, respectively. The increase in 
the number of clusters indicates that, over time, initial strong 

Fig. 9. NDVI maps of the (a) first, (b) second, (c) third and (d) fourth-time steps.  

Table 7 
Rainfed and irrigated cropland areas of all time steps on the GDP.  

Time Step Rainfed cropland area (ha) Irrigated cropland area (ha) 

1 103,016 17,655 
2 151,834 28,501 
3 140,876 39,695 
4 160,399 42,330  
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relationships among members have diminished and has resulted in 
splitting large clusters into smaller clusters to maintain the quality of the 
clusters. Fig. 10 shows the spatial distributions of the GWL clusters in the 
first and last-time steps. 

As shown in Fig. 10a, GWL shows three patterns on the GDP in the 
first-time step, among which cluster 3, with the lowest GWL average 
(1805 m), was located in the eastern and northwestern parts of the plain. 
In the second-time step, the total GWL average of the plain increased by 
approximately 1 m, which could have been a consequence of the longest 
wet period on the GDP, which occurred from March 1994 to April 1996, 
and could have compensated groundwater overextraction. Comparison 
of the first two time steps indicates that clusters of GWL did not expe-
rience a significant change in the structure of clusters during this period 
(Fig. 10a and 10b). In the third-time step (Fig. 10c), the highest amounts 
of groundwater depletion (approximately 24 m) occurred in the western 
part of the GDP, where cluster 3 was split into two clusters. Between the 
second and third-time steps, the area of cropland increased significantly 
(Fig. 9), which could have changed the groundwater consumption 
pattern (the number of clusters rose to five during this time) in combi-
nation with climate change and population growth. Recognizing and 
forming new patterns from a cluster in the following years could have 
resulted from heterogeneous changes between members. Understanding 
these changes among the cluster members is one of the valuable out-
comes of spatiotemporal cluster analysis. This application makes the 
time and place of uncommon events approximately recognizable. 

In the last-time step, the number of recognized patterns was 

increased to seven, and the total distribution of members among clusters 
was changed, as shown in Fig. 10d. This relocation of members between 
clusters indicates the existence of inconsistent changes in the zones of 
these clusters, and one of the main factors was extensive groundwater 
withdrawal. On the other hand, crop patterns changed in which more 
water-intensive crops were cultivated, which could have significantly 
increased groundwater withdrawals. The most noticeable groundwater 
depletion (almost 24 m) during this time step is in cluster 7, located in 
the western part of the GDP. It is worth mentioning that from 1988 to 
2017, the centroid well of cluster 7 (W18) experienced an almost 33 m 
decline on average. Eventually, the spatiotemporal comparison of GWL 
reveals that the zone of clusters with high amounts of groundwater 
depletion has expanded from the west and east to the centre of the GDP. 

Since the wells that lie in the same cluster may have a similar pattern, 
the behaviour of wells in a cluster may be determined from an assess-
ment of the central well utilized as the representative for groundwater 
conditions in the cluster (Nourani et al., 2016). 

To visualize the trend of cluster changes over time and to investigate 
the relationship between the SC and the quantitative status of GWL 
clusters, the temporal changes of these factors are plotted for centroid 
wells selected as the best representatives in their respective clusters 
using the Euclidean distance criterion. Thus, wells 18, 30, 33, and 48 
were chosen to have prominent representations of groundwater in the 
entire GDP. Fig. 11 shows the temporal changes in the GWL and SC of 
the centroid wells to show the impacts of agricultural prosperity on GWL 
in each pattern. The values of the variables were normalized before 

Fig. 10. Spatial distribution of GWL clusters in the (a) first, (b) second, (c) third and (d) fourth-time steps.  
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plotting. 
It can be seen from all plots in Fig. 11 that the inverse relationship 

between the SC and GWL was maintained during the study period, 
which indicates that GWL depletion trends led to improved structures in 
these clusters (increase in the SC). These improvements resulted from 
the formation of clusters with higher within-group-object similarity and 
between-group-object dissimilarity. Based on the sharp decrease in GWL 
in most members, their similarities increased and consequently led to an 
increase in the SC. It could be concluded that with the increase in 

anthropogenic activities (e.g., excessive withdrawal of groundwater for 
irrigation purposes, which is a major consumer on the GDP), the natural 
diversity of GWL distribution on the GDP has been gradually decreasing, 
which can cause irreversible consequences, such as permanent subsi-
dence and related ground failures, if the decline continues for a long 
period of time. 

Well 18 was selected as a cluster representative for the western part 
of the GDP. As shown in Fig. 11a, the highest decrease in GWL (19 m) 
occurred between the third and fourth time steps. Over the period 

Fig. 11. The temporal changes of GWL and SC of centroid wells for clusters (a) W18, (b) W30, (c) W33, and (d) W48.  
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between the second and third time steps, despite the high increase in 
cropland areas, there was no large water-level drop because, during this 
period, the longest wet period of the region occurred and partially offset 
groundwater overpumping for agricultural activities. In contrast, after 
the second time step, this region underwent the most critical cluster with 
a decreasing trend in GWL. 

Well 30 represents the cluster that was first located in the south-
western and centre parts of the GDP. Fig. 11b shows that the GWL of well 
30 slightly increased between the first and second-time steps. The 
occurrence of the longest wet period (from March 1994 to April 1996) 
could have been a reason for the GWL increase during this time period. 
Increasing the GWL reduced the SC values, which indicates that the 
natural diversity of the GWL distribution has increased across the plain. 
The comparison of the first and last-time steps shows that the GWL of 
well 30 has decreased by approximately 33 m. 

Well 33, with a 1.8 m depletion in GWL between the first and last- 
time steps, is the representative member of a small cluster located in 
the southern part of the GDP. In terms of GWL, this member had the 

smallest fluctuations compared with other centroid wells. Fig. 11c 
clearly shows that the inverse relationship between the GWL and SC 
remained even during small fluctuations in GWL. 

Well 48 is the centroid member of the first eastern cluster with a 26- 
m depletion in which the GWL had a decreasing trend during all time 
steps, as shown in Fig. 11d. It is clear from Fig. 9 that the eastern part of 
the GDP between the first and last-time steps underwent a noticeable 
increase in cropland area that caused further intensification in the 
competition for groundwater resources. 

Overall, the plots in Fig. 11 indicate that some factors, such as sig-
nificant irrigated cropland expansion, lack of surface water resources, 
and GWL decline, might lead to a loss of natural diversity of GWL dis-
tribution on the GDP after the second-time step (1999). 

4.5. Trend analysis of groundwater quality 

Piper diagrams have been widely utilized to recognize the dominant 
hydrochemical facies by plotting major cation and anion concentrations 
(Piper, 1994). In the Piper diagram, major ions are plotted in two base 
triangles as major cations (Ca2+, Mg2+ andNa+ + K+) and major anions 
(Cl− , SO2−

4 , andCO3
2− + HCO−

3 ) in milliequivalent percentages, and the 
diamond part shows the dominant water chemistry type. Based on the 
statistics of physicochemical variables in this study (Table 2), the order 
of dominant cations and anions are ranked as Ca2+ > Mg2+ > Na+ > K+

and HCO3
− > SO4

2− > NO3
− > Cl− , respectively. Fig. 12 shows Piper 

diagrams plotted for all cluster members in the first and last-time steps in 
which the dominant facies of clusters are Ca–Mg-HCO3 and the domi-
nance of weak acidic anions over strong acidic anions and alkaline 
earths over alkali anions are shown. The members that belong to the 
mixed-type zone can be recognized as neither cation nor anion domi-
nant. Comparing the Piper plots related to the first and last-time steps 
(Fig. 12) shows the increase in HCO3

− in some clusters that could have 
been a consequence of soil CO2 leakage to the groundwater. Organic 
matter decay and root respiration increase the soil CO2 leakage rate, and 
the combination of CO2 with groundwater recharge forms HCO3

− , 
leading to mineral dissolution. Additionally, it is clear from Fig. 12 that 
the Na+ of some members increased over time steps, which could 
represent anthropogenic pollution footprints, such as a consequence of 
cropland expansion on the GDP. 

Cluster ensemble of physicochemical variables could recognize three 
patterns for both the first and fourth-time steps and could extract two 
patterns for the second and third-time steps. To evaluate the water 
quality of clusters used specifically for drinking purposes, the PIG was 
calculated for each cluster by calculating the average PIG for the 
centroid wells in the clusters (see Table 8). The ranges of drinking water 
pollution have been categorized into five groups: PIG values below 1.0 
indicate insignificant pollution (IP), 1.0–1.5 indicate low pollution (LP), 
1.5–2.0 indicate moderate pollution (MP), 2.0–2.5 indicate high pollu-
tion (HP) and PIG > 2.5 indicate very high pollution (VHP) (Subba Rao, 
2012). 

The results show that until 2008 (third-time step), all clusters had an 
insignificant pollution level; hence, their qualities were suitable for 
drinking consumption despite increasing PIG values (Table 8). In the 
last-time step, the PIG values significantly increased in wells 12 and 28 
(eastern part of the plain, Fig. 13), and their categories changed to low 
and high pollution. The assessment of the PIG for the last-time step in-
dicates that the proposed method in this study could find exclusively 

Fig. 12. The Piper diagrams of the (a) first and (b) fourth-time steps.  

Table 8 
Results of groundwater quality classification based on the PIG.  

Time Step 1 2 3 4 

Centroid Well W28 W24 W12 W28 W12 W24 W12 W24 W28 W12 

PIG 0.5745 0.5328 0.8213 0.4888 0.8841 0.5500 0.8109 0.4626 1.375 2.02 
Category IP IP IP IP IP IP IP IP LP HP  
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distinguishable clusters and could visualize the spatiotemporal changes 
in the PIG. 

To classify irrigation water, the USSL suggested a practical diagram 
that describes the combined effects of sodium hazards and salinity 
hazards. On the USSL diagram, S and C are the abbreviations for SAR 
and EC in micromhos per centimeter (Balasubramanian et al., 2015). In 
this step, the USSL diagram categorizes the clusters for irrigation pur-
poses using SAR and EC values. The USSL plots of groundwater samples 
illustrate all members in the limits of C2S1 (medium-salinity and low- 
sodium water) and C3S1 (high-salinity and low-sodium water), sug-
gesting that the groundwater samples were satisfactory for irrigational 
use in all time steps (Fig. 14). 

Comparing the USSL diagrams (Fig. 14) revealed that members of 
cluster 2 of the second-time step experienced a noticeable increase in 
associated variables (EC and SAR) in the next time steps. Consequently, 
some of the members entered the C3S1 status due to their movements in 
the USSL diagrams. Eventually, cluster 3, with only one member, is 
bound to fall into the C4S1 (very high salinity with low sodium) zone in 
the fourth-time step. Overall, the USSL diagrams of all time steps illus-
trated that most parts of the GDP had a satisfactory quality for irrigation, 
while the continuous increases in physicochemical variables in the 
eastern part of the plain decreased the suitability of groundwater for 
irrigational purposes. 

To gain a broader perspective regarding temporal changes in phys-
icochemical variables, the PIG, SAR, EC, GWL, and SC values of centroid 
wells are plotted in Fig. 15 as representatives of groundwater quality in 
various regions of the plain. Due to the different units of variables, they 
were normalized before plotting. 

Regarding Fig. 15b, well 24 was selected as the representative of the 
western cluster for groundwater quality and this monitoring well 
experienced unusual changes over time. As shown in Fig. 15b, all vari-
ables reached their maximum in the second-time step. Despite this in-
crease, it was still in the category of insignificant pollution and excellent 
water according to the PIG and USSL diagrams. After the second-time 
step, despite the sharp decrease in GWL, the trend of quality variables 
gradually decreased. Consequently, water quality conditions improved 
in the western part of the GDP based on the PIG and USSL diagrams. The 
trend of the SC in this quality monitoring well indicates that the increase 
in the quality variables disturbed the homogeneous structure of the 

members in the second-time step. However, with the beginning of the 
decreasing trend of the variables, the SC subsequently began to increase 
after the third-time step. 

For well 28, the maximum increase in quality variables occurred 
between the third- and fourth-time steps, which caused a low pollution, 
high salinity, and low sodium status for drinking purposes and irriga-
tional use. Fig. 15c also indicates that the decrease in GWL had an 
influential role in increasing the concentration of quality variables in 
this area. Investigating the increasing trend of the SC for well 28 during 
the time steps illustrates that the increase in quality variables in the 
second and third steps formed more homogeneous clusters that reveal 
spreading pollution in groundwater in the eastern part of the GDP. 

The highest concentration of qualitative variables could be observed 
in the eastern part of the GDP, and well 12 was the centroid member of 
the most critical clusters in all time steps, which has undergone sharp 
increases in physicochemical variables (see Fig. 15a). Due to this esca-
lation during the fourth-time step, this well could not be placed with any 
of the other clusters and thus formed a single-member cluster. During 
the last-time step, experiencing an 83% increase in SAR and a 130% 
increase in EC, this well was bound to fall into the C4S1 zone, indicating 
very high salinity, which represents an alarming condition for this type 
of water that is used for irrigation purposes. The PIG of well 12 did not 
experience considerable fluctuations in the first three time steps, but 
with an increase of 150%, it was categorized as highly polluted for 
drinking purposes in the fourth period. 

Finally, the eastern part of the plain with a noticeable increase in 
quality variables was recognized as the area undergoing the most 
changes in groundwater quality variables, while the highest ground-
water depletion rate occurred in the western part of the GDP. 

4.6. Scenarios for the groundwater quality in the eastern part of GDP 

Different scenarios are considered to explore the significant reasons 
for the detected critical clusters in eastern GDP based on the outcomes of 
statistical approaches in this study. 

In the first scenario, to investigate the effects of the aquifer’s essence, 
geological explorations in the structure of the aquifer were performed. 
The sediment, cementing materials, different minerals, and lithos-
tratigraphy units have particular properties to erosion and weathering. 

Fig. 13. Spatial distribution of groundwater quality clusters in the fourth-time step.  
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According to the kind of petrology of each formation, water may 
dissolve different cations and anions, which finally changes the quality 
of water. Evaporated deposits such as gypsum, anhydrite, marl, and salts 
are sensitive to erosion and weathering. So, toxic ions such as Cl− , SO4

2−

and Na+ can separate from them easily and decrease the quality of 
water. The results of hydrogeological investigations (section 2) indi-
cated that the eastern part of GDP consists of fine-grained alluvial de-
posits with high percents of silt, clay, and gravel at the first layers 
(Fig. 3d), and its bedrock is an alternation of marl rocks which may have 
an influential rule in decreasing the groundwater quality which is 
consistent with previous studies (e.g., Rahmati et al., 2015). Also, other 

studies indicated that the ground slope is an influential factor affecting 
the groundwater quality because, in slow slopes, surface water pollution 
has enough time to penetrate into the underground (e.g., Nadiri et al., 
2017; Chen et al., 2019). Fig. 3a shows the digital elevation model of 
GDP that indicates the eastern part of GDP has slow slopes compared 
with other parts of the plain, which may affect groundwater quality by 
penetrating the agricultural pollution into the ground. 

Another scenario is the effects of the groundwater flow path; Alluvial 
deposits of a plain can be an important source of groundwater. The 
geology of GDP (Figs. 2 and 3) has a great potential for precipitation and 
irrigation return flow infiltration. Also, the existence of limestone and 

Fig. 14. The USSL diagrams in the (a) first, (b) second, (c) third, and (d) fourth-time steps.  
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dolomite in some parts of the plain show karst systems that are char-
acterized as regions with high pollution vulnerability. The dominant 
groundwater flow direction of GDP is from the west and southwestern 
parts of the plain to the east and southeastern regions (Fig. 5). The di-
rection of groundwater flow can explain the spatial distribution of 
quality clusters. Figs. 5 and 13 illustrate that the polluted clusters of the 
aquifer have spread in the direction of the groundwater flow path of the 

eastern part of GDP. Also, a lower hydraulic gradient in the eastern part 
of the plain can be a reason for high concentrations of groundwater 
quality variables. According to the Chebotarev sequence (Chebotarev, 
1955), as water moves in the direction of the flow path, the chemical 
composition experiences normal changes. Changes in water quality 
composition also occur with increasing depth of travel, as bicarbonate 
anions, which dominate in many shallow groundwaters, give way to 

Fig. 15. The temporal changes of the PIG, SAR, EC, GWL and SC of centroid wells in quality clustering: (a) W12, (b) W24, and (c) W28.  
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sulfate and then chloride anions, and calcium is exchanged for sodium. 
In this study, the groundwater flow path may result in more EC values in 
the eastern parts regarding the Chebotarev sequence. 

Anthropogenic activities can be another cause that forced ground-
water quality of GDP with significant problems. The results of section 
4.3 showed that GDP experienced a sharp increase in the area of irri-
gated croplands that require large amounts of water, fertilizers, and 
pesticides to achieve high production. There can be a significant rela-
tionship between cropland expansion and groundwater quality of GDP, 
which was also presented by other studies (e.g., Rahmati et al., 2015). 

The effect of changes in the groundwater depletion on values of EC 
might be considered as another scenario. Therefore, the correlation 
coefficient between the changes of EC and groundwater depletion was 
estimated. The results showed a low negative correlation (-0.21), indi-
cating that changes in groundwater depletion and EC values did not 
contain considerable linkage (see Fig. 16). 

In another scenario, the moving average method was utilized to 
study annual precipitation data in the meteorological station (P5 in 
Fig. 1a) located in the eastern GDP (see Fig. 17). The results denoted that 
this part of the plain experienced dry periods from 1999 to 2009, and 
from 2012 to 2015, which can affect the groundwater quality. 

Finally, the eastern part of the plain with a noticeable increase in 
physicochemical variables such as EC was recognized as the area un-
dergoing the most changes in groundwater quality variables, while the 
highest groundwater depletion rate occurred in the western part of the 

GDP. Taken together, aquifer materials, low rate of recharge, slow slope, 
groundwater flow path, the increasing trends of groundwater depletion, 
occurring multiple dry periods, cropland area expansion, overuse of 
chemical fertilizers and pesticides in the eastern part of GDP are the 
influential factors that affect the groundwater quality. 

5. Conclusions 

In the present study, long-term spatiotemporal assessment of 
groundwater quantity and quality on the GDP was conducted using a 
combination of results from three different types of clustering methods. 
Furthermore, to fulfill the aim of extracting the most homogeneous 
clusters, a cluster ensemble method was applied. Ensemble clustering 
enhanced the final validity index in quantitative and qualitative 
groundwater clustering up to 12% and 20%, respectively. 

The significant increase in irrigated cropland area and the changes of 
crop patterns relating to the cultivation of water-intensive crops, such as 
potatoes and forage, in the eastern part of the GDP caused large declines 
in GWL (almost 26 m) and an increase in groundwater quality variables 
in clusters that represents a shift from insignificant pollution to low and 
high pollution in the last-time step. Furthermore, the patterns of GWL 
revealed that the most noticeable groundwater depletion (almost 33 m) 
occurred in cluster 7, which is located in the western part of the GDP, 
which has had a considerable increase in cropland area between the 
first- and last-time steps. The final results revealed that simultaneous 

Fig. 16. The distribution of changes in (a) EC and (b) groundwater depletion.  

Fig. 17. The wet and dry periods of the eastern part of GDP.  
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analysis of the cluster ensemble with the USSL diagram, Piper plot, and 
PIG is a flexible and scientifically justified approach to recognize and 
display the changing patterns of groundwater quantity and quality. The 
results of this study provide insight into the spatiotemporal changes in 
groundwater conditions on the GDP that can be utilized for long-term 
policies and effective implementation of mitigation measures. 

For future studies, combining the cluster ensemble method with 
artificial intelligence approaches to forecast groundwater quantity and 
quality variables is proposed. Due to the lack of monthly physico-
chemical data for the study area, groundwater quality clustering was 
performed using 6-monthly data, and it would be more efficient to apply 
the proposed methodology to other study areas with monthly physico-
chemical datasets, if available. Furthermore, the spatiotemporal cluster 
ensemble method of hydroclimatological variables is also suggested to 
recognize the impacts of climate change. 
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