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ABSTRACT

Reservoirs have been installed as long-term assets to guarantee water and energy security for decades, if not centuries. However, the effect

of siltation undermines reservoirs’ sustainability because it significantly reduces the reservoirs’ original capacity. Extreme events such as

typhoons, floods and droughts are posited to have extreme impacts on sediment inflow and deposition in reservoirs. The same holds

true for ISMTs (implemented sediment management technologies), such as dredging, spilling and bypassing. However, the large-scale analy-

sis of their effects on reservoir sedimentation progression, recovery and development was not feasible due to data scarcity and technological

restrictions. The present paper closes this information gap by conducting a GRU (gated recurrent unit) neural network analysis of 1,224 Japa-

nese reservoirs, for which the sedimentation, local precipitation, extreme events and ISMTs were monitored between 2000 and 2017. The

network reveals the beneficial impacts of dredging, spilling and bypassing. The results also demonstrate the potential of smart management

and improved monitoring for sedimentation threat abatement. Thus, foresighted engineering and dedicated governance action in flood and

drought scenarios can significantly strengthen the sustainable behavior of key infrastructure elements such as reservoirs.
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HIGHLIGHTS

• Unique data set: 1,225 dams with 18 years of sediment record each.

• Anti-sediment management notations.

• Artificial neural networks with gated recurrent units as methodology.

• Unique conclusions regarding the efficiency of sediment management methodology.

• Generalized results represent multifaceted types of reservoirs.
1. INTRODUCTION

The number and capacity of hydropower sites and reservoirs are expected to increase within the next decades (Annandale
2013). For example, Zarfl et al. (2015) assume that the global quantity of installed dams will double from 2010 to 2030.
Although a non-negligible number of proposed reservoirs will not be completed, the overall reservoir trend consists of con-

stant or disproportional growth (Dogmus & Nielsen 2019).
A partial explanation for the construction boom is the increasing siltation in already inaugurated dams, which has reduced

the gross reservoir volume per capita (Annandale 2013) and the gross reservoir volume (Oehy 2003; Kantoush & Sumi 2010)

(as shown in Figure 1) to the level of the 1970s despite the ever-increasing number of reservoirs. Figure 1 demonstrates clearly
that in 2010 global sedimentation was assumed to grow faster than the global gross reservoir volume. This is a giant setback
for sustainable long-term renewable energy generation and water supply security.

Studies show that planners, operators and practitioners underestimate the siltation threat, whereas they overestimate their own
capacities, namely, that reservoir sedimentation management suffers from optimism bias (Annandale 2013; Flyvbjerg 2016;
Schleiss et al. 2016; Landwehr et al. 2020). Thus, it is no surprise that the implementation and analysis of suitable
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Figure 1 | Assumed global (and Swiss) siltation development according to Oehy 2003; Kantoush & Sumi (2010).
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management strategies remain challenging (de Vente et al. 2013; Yang 2013; Kantoush & Sumi 2017) despite the availability of

manifold elaboration prediction and simulation approaches (Simoes&Yang 2006; Zeleke et al. 2013; Omer et al. 2015; Ghimire
&DeVantier 2016; Hao et al. 2017). This scenario prevails regardless of the environment, climate, society and technological level
and threatens the designed functionality of reservoirs worldwide (Basson 2009; Schleiss et al. 2010; Annandale 2013).

This is alarming, as reservoirs are a junction infrastructure element of the WEF (water–energy–food) nexus, namely, via

crop production or hydroelectricity. Hence, reservoirs and their sedimentation are also crucial factors in the realization of
highly interlinked sustainable development goals (SDGs) (United Nations 2015; Zhang et al. 2016; Pousse & Latouche 2018).

Various technological, management and governance approaches to amend, reduce or reverse sediment accumulation in reser-

voirs are applied globally to a scant degree compared to the global gross reservoir volume (Morris&Fan1998;Kondolf et al. 2014;
Pahl-Wostl 2015; Sumi 2015; Kantoush & Sumi 2017, 2019; Morris 2020). Moreover, the analysis of these approaches has been
restricted to local or regional studies (Haregeweyn et al. 2013; Pandey et al. 2016; Velásquez-Castro et al. 2016; Wild et al. 2016;
Adeogun et al. 2018) of single or a few reservoirs due to a lack of siltation data (Schleiss et al. 2016). The same holds true for events
that are beyond human control, namely, force majeure such as floods, typhoons or earthquakes, which have substantial impacts
but the analysis ofwhich is typically local or regional (Lee et al. 2006;Vanmaercke et al. 2014;Wang et al. 2018; Stähly et al. 2019).

Nevertheless, those studies do not incorporate the decisive learning factor called experience that surges from large-scale,
long-term data. Such data-driven studies and approaches regarding reservoir sedimentation management and event impact
have proven to be challenging in recent decades, as few authorities monitor sediment in a regular, overarching manner.

One of the exceptions in data monitoring, however, is found in Japan, which is also one of the leading countries in applied

sediment management (Kondolf et al. 2014; Auel et al. 2016; Kantoush & Sumi 2017). Japanese data collection regarding
siltation is comparatively vast in terms of both time and extent (Landwehr et al. 2020).

However, siltation is a nonlinear time-series process (Annandale 2013). An emergent tool for nonlinear data analysis and

nonlinear data emulation is artificial neural networks (ANNs), the advantages of which include comparatively rapid applica-
bility and vast use case flexibility (Gamboa 2017). Recurrent neural networks (RNNs), which include long short-term memory
(LSTM) and gated recurrent unit (GRU) variants, are especially suitable for surveying complicated and intertwined time-

series processes (Fu et al. 2016; Petneházi 2019; Elsworth & Güttel 2020).
By utilizing RNNs, the present paper seeks to derive evidence from the Japanese dataset that various events or management

technologies and actions have retraceable impacts on reservoir siltation. The study aims at deducing these effects from a big
long-term data picture to obtain generalized results that might be applied or reproduced globally. In most countries of the

world, data are scarce; hence, to pursue global reproducibility, this paper attempts to obtain improved results but not maxi-
mum confidence with a highly reduced data input.

The pursuit of general results implies that this analysis does not consider every single dam in a highly specificmanner – it is acknowl-

edged that there arehuge individual differences.Nevertheless, if the Japanese reservoir variety is regardedas a reflectionof the global or
supra-regional reservoir variety, the produced results will provide worthwhile insights into global reservoir sustainability.
://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
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2. METHODOLOGY

Reservoir siltation data suffer from ambiguity due to the influence of other parameters. Figure 2 presents the absolute sedi-
mentation in comparison to the age of three exemplarily selected reservoirs. It also shows occurrences of (natural) events or
implemented sediment management technologies (ISMTs) (from now on, event categories are used to refer to both).

Information on how the event categories influence sedimentation is difficult to derive from these few and partially contra-
dictory examples. Thus, additional information is needed; tools that can extract information from a complex web of data, such
as ANNs, are mandatory.

The objective of the ANNmethodology in the present paper is to train a network on a reduced set of data that also includes
notifications on event categories. Based on the data characteristics, the ANN shall finally form a variable that insinuates what
the network has learned regarding each event category. Technically, the ANN and data processing is carried out via Tensor-

flow, Keras and Python in a Jupyter compiler, while making use of standard packages of numpy, pandas or sklearn.
In this study, the network aims at learning the execution of flexible and generalized hindcast emulations on the siltated

whole volume for each reservoir. To do so, the network must learn data characteristics for each category of input data.

This also holds true for the event categories.
The study shall finally display whether the event categories exert general effects on siltation in reservoirs. It shall determine

whether those effects are siltation reducing or enforcing. To do so, a semi-randomly selected variance of original reservoir
data is modified and retested on the ANN hindcast emulations with modified data. The modification regards solely the

event categories.
The deviation from the hindcast emulations with original event category data creates the desired variable that expresses the

effect of each event category. A simplified outline is presented in Figure 3.

The process uses the following input variables: event categories (variable of which the effect is surveyed), siltation to whole
volume (variable that is to be affected by the others), reservoir size (to roughly distinguish between substantially different reser-
voir types), precipitation for each month (to roughly distinguish between substantially different reservoir types), year (as a

marker for a continuous time series) and initial sedimentation to whole volume (to enable the ANN to create a time-
series hindcast). The output variable is the: general deviation of hindcasts that were manipulated by a sole event category
from the original hindcast (to measure the relative effect of an event category on reservoir siltation).

A wide range of methodologies were applied in the stages of the present paper to execute the outline of Figure 3. These
included data preparation, network optimization and emulation and analysis of the results. The whole process will be
explained subsequently in detail. It is illustrated in Figure 4.

2.1. Base data

The base data correspond to 1,224 reservoirs throughout Japan. The data originate from various files and formats, which were

joined in a semiautomated process. Altogether, a compound of data was created, which includes the reservoir size (very small:
,0.35 million m3, small:. 0.35 million m3, medium:. 1 million m3, large:. 10 million m3 and very large:. 100 million m3
Figure 2 | Three examples show that the impacts of event categories on siltation are not (easily) derivable from a few examples.

://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
TY user



Figure 3 | Three main steps for obtaining the desired information on the impacts of ISMT and events on siltation.
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total storage volume [this definition was established for Japan and is not internationally applicable]), siltated whole volume,
inauguration year, average monthly precipitation for each month and, most importantly, management and event notifications
of the operators. The set also includes information regarding the reservoir purpose, siltated inactive storage, siltated active
storage, location and river basin affiliation; additional information was not included in the process of the present paper to

further reduce the number of data input variables (see Section 4.5).
The data format is annual and incorporates all years from 2000 to 2017 (Heisei 12-29 –平成１２-２９年); hence, each reser-

voir corresponds to 18 time step time series. Stations of data origin are depicted in Figure 5. The data are structured in three

dimensions: reservoirs, time steps and features.
The bulk of the data was provided by the Kokudo Koutsuu Shou – 国土交通 省 (Japanese Ministry of Land, Infrastructure,

Transport and Tourism, MLIT) and the Doboku Kenkyuu Sho – 土木研究所 (Public Works Research Institute, PWRI). Only

the average monthly precipitation data were obtained from the Kishouchou – 気象庁 (Japan Meteorological Agency, JMA).
Hence, the data reflect the general characteristics of Japan’s reservoir landscape.
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Figure 4 | Representation of the methodological process of the present paper.
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2.2. Artificial neural networks

For the obtained data, a nonlinear relation is presumed. ANNs are considered a suitable tool for analysis, pattern detection
and data emulation for this type of data behavior (Schmidhuber 2014; Gamboa 2017; Michelucci 2018), especially RNNs (Fu
et al. 2016; Petneházi 2019; Elsworth & Güttel 2020).

A well-trained ANN can emulate, forecast or even create realistic results based on limited or incomplete nonlinear data
(Schmidhuber 2014; Michelucci 2018). This data situation is given for the Japanese (or every other country’s) siltation
case, as demonstrated by Landwehr et al. (2020).
://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
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Figure 5 | Locations of reservoirs and precipitation stations in the data set.
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An ANN processes input data in various steps via simple to complex logical and calculation operations. The ANNs are

structured in layers. A single operation within that layer is called an artificial neuron. The artificial neurons are (just like
the biological originals) highly interconnected.

In the case that every cell of a layer is connected with every cell of the next layer, that layer is called fully connected. Each
neuron consists of adaptable weights which are the main lever for the flexibility of neural networks. An example of a simple
ANN is displayed in Figure 6.

During a training phase, input data are processed, and the known R of the input data is provided. The result R0, which is

produced by the ANN, is compared to R. Their difference is called the loss. Via a loss function, all weights of the network are
adapted with the objective of producing an R0 that is close to R. This is called backpropagation. All data are processed by the
network in several iterations, the number of which is determined by the batch size. All data are referred to the network in
multiple epochs, namely, multiple times. At the end of each epoch, a validation phase is conducted, in which the ANN capa-

bility is evaluated without the known result. This validation loss is a crucial measure of the progress of a network.
Afterward, a testing phase is conducted on data that are completely unknown to the network. Again, the result R is hidden

from the network. If the ANN is sufficiently flexible to create Rtest that is close to Rtest, it is regarded as successful. In this case

the ANN is capable of showing that it does not merely copy the data pattern, but instead learns inherent data characteristics
by the selection of suitable weights (Schmidhuber 2014; Michelucci 2018). As this is exactly the objective of the present study
(the detection of data characteristics and extraction of their influence from a vast data set, as illustrated in Figure 3), ANNs are

an ideal tool.
2.2.1. Gated recurrent units

For instance, GRUs are utilized to preserve information from the second word/time step of a phrase/time series that influ-

ences the fifth word/time step of another phrase/time series. Whereas basic ANNs do not provide a memory function for
preserving the necessary information, basic RNNs suffer from the vanishing gradient problem, where initial weights are
no longer altered and no learning occurs, thereby leading to an incorrect memory. The GRU structure solves this problem
om http://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
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Figure 6 | Schematic diagram of a simple neuronal network with three layers and no special neurons, such as GRUs. The ANN produces a
result R0 via its weighted neurons during training that is expected to mimic (with a limited variance) the known result R. The loss function is
used to constantly update and improve the weights. W serves as an abbreviation for all weights between the neurons.
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with the update gatekeeper function Zt from the following equation (Chung et al. 2014; Zhang et al. 2020):

Zt ¼ s(Xt � Wxz þHt�1 � Whz þ bz) (1)

where Zt is the updated gatekeeper function, Xt is the new information vector in time step t, Ht�1 is the output information
from the previous time step, W is the neuronal weight factor, b is the bias, xy is the affiliation of bias or direction of weight
factor and s is the sigmoid activation function.

It adds the new information Xt with the output Ht�1 from the previous step. Consistent with the process of ANNs, the

information is weighted by the iteratively updated weights W. The s function scales the result to between 0 and 1. Zt can
be used as a gatekeeper that decides if and to what extent information is processed. Zt’s gatekeeper functionality is
applied in Equation (2):

Ht ¼ Zt �Ht�1 þ (1� Zt)� ~Ht (2)

where ~Ht is the candidate output information, Ht is the GRU output information, � is the Hadamard (elementwise) pro-
duct operator and Zt decides the degrees of influence of both ~Ht and Ht on the output. It is also capable of turning off
each one’s influence completely. Thus, Zt preserves old information when necessary or replaces or modifies it with

new information from ~Ht. As the operation is performed elementwise via the � operator, the gatekeeper function selec-
tively decides to update parts of the information. ~Ht is defined as follows:

~Ht ¼ tanh(Xt � Wxh þ Rt �Ht�1Whh þ bh) (3)

where Rt is the relevant gatekeeper function.
://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
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The added new and old information is scaled between �1 and 1 via tanh. The information is gated via Rt which decides

whether old information should influence the candidate output. Rt is displayed below and operates essentially like
Equation (5):

Rt ¼ s(Xt � Wxr þHt�1 � Whr þ br) (4)

The complete process is illustrated in Figure 7. The most important step is the updated gatekeeper mechanism, which

enables selective propagation, updating and discarding of information.
This is a deciding key feature for the present study. It enables the overall network to learn and apply the characteristics of

the occasionally notified event categories in training and testing. Therefore, GRU is an ideal tool for surveying the effects of
event categories and realizing the desired task frame, as illustrated in Figure 3.
2.3. Data preparation

Precipitation measurement stations and reservoir locations were not concordant (see Figure 5). The Pythagorean theorem
was applied to match each reservoir with its closest precipitation station (see Figure 5).

The data for reservoirs and precipitation is extensive. However, sedimentation or precipitation data was not continuous,
complete or accurate in all cases. This was due to gaps in measurement, typing errors of operators or the simple fact that
stations or reservoirs were just inaugurated after the year 2000.

Random forest imputation based on Stekhoven & Bühlmann (2011) was utilized to fill the gaps smoothly with the objective

of imitating natural conditions that were derived from available data. To realize this objective, the algorithm utilizes the Gini
impurity, which measures the likelihood of randomly chosen values fitting into a specified data distribution. The algorithm
uses a likelihood divide that is based on the Gini impurity (it branches into two directions) and continues with branching until

it reaches a level where it cannot further reduce the Gini impurity. Thus, it forms a tree. This methodology is applied various
times with randomized values to create a random forest. The values with the lowest Gini impurity are chosen to fill the data
gaps (Koehrsen 2018).

For unavailable data, an out-of-bound dummy value was chosen. In the case of nonconcordance, e.g., when siltated active
and inactive storage would not sum to complete siltation, semiautomated search correction (a simple visual basic algorithm
that adjusts values and, in case of inconsistencies, leaves the final verdict to humans and, therefore, is semiautomated) was
applied.

Operators of the 1,224 reservoirs left notifications regarding special ISMTs and (natural) events. Those notifications were
neither normed nor streamlined and were left to the respective employee’s intention, interpretation and preferred Japanese
syntax and semantics. Consequently, there was no unique pattern that could be interpreted by a neural network. Hence, the
Figure 7 | Representation of operational processes of a GRU according to Zhang et al. (2020).
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notifications were manually interpreted and unified into 14 overarching categories of events and ISMTs that were most

common or frequent. They are listed in Table 1.
The categorized ISMTs and events were – similar to other categorical values – labeled and enumerated, which rendered

them interpretable for machine learning.

ANN performance depends on the availability of vast data input with substantial data variety to avoid overfitting (Allamy
2014; Zhang et al. 2018). This is also valid for time-series surveys (Landwehr et al. 2020). The larger the dataset is, the higher
the probability of an ANN adapting to unique data patterns and, thus, detecting the influence of the aforementioned event
categories. Hence, it is necessary to artificially augment the data for two main reasons:

1. To increase the absolute number of events with reduced appearance: This helps the ANN detect rare events and learn from
them. In the original dataset, various events are rare (or very rare); therefore, augmentation is mandatory.

2. To increase the data variety: Variety (e.g., event occurrence or siltation rise) helps the ANN not merely copy data patterns
of the training set but also learn its inherent information. When unknown (test) data are faced, data variety (produced by
data augmentation) helps the ANN flexibly adapt.

Thus, the available data were augmented using the TSAUG (time-series segmentation) algorithm based on Wen & Keyes
(2019). It was selected because it enables the use of semi-intelligent augmentation techniques. The algorithm connects events
to corresponding time-series patterns and induces semi-randomized varieties to artificially created copies of the original time-

series compound.
The following techniques were used: 10–35% drift with 80% probability of occurrence (Um et al. 2017), a Blackman–

Harris-based window function with 80% probability of occurrence (Nuttall 1981; Smith 2011) and randomized time warping

(Um et al. 2017). These techniques shifted the occurrence of events and induced a variety of slopes and patterns. Each of the
original 1,224 time series was augmented 10 times, thereby creating a data set of 13,464 reservoirs (1,224 of the original) with
18 time steps.

Each reservoir’s 18 time step series were sequenced with a rolling-window algorithm that was used in forward projection

to provide a more effective memory function of n consecutive years (de Meer Pardo 2019). The rolling window always uses
the last predicted value and n of its predecessors. The initial prediction is determined by the original data values. n was
chosen to be 4 in the present paper, which was determined by the lower loss and higher accuracy values of the subsequent

ANN.
Finally, the data were separated into randomly organized test (10% of the data), training (81% of the data) and validation

(9% of the data) sets according to the requirements of Section 2.2, which was carried out via ordinary numpy shuffle
Table 1 | Event categories from MLIT data alongside the prevailing technical terms of the Japanese original
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commands. The size of the respective sets follows standard recommendations (Michelucci 2018). The sets were normalized

via removing the mean and scaling to unit variance utilizing the subsequent equation:

z ¼ x� u
s

(5)

where z is the standardized value, x is the sample from data set, u is the mean of the data set and s is the standard deviation of
the data set.
2.3.1. Target value

The target value that will help retrace the effects of events or ISMT on reservoir siltation must serve as a comparative value

across all types and sizes of reservoirs. Thus, it must be relevant and capable of serving as a reference for reservoirs that are
not part of the data set, namely, the target value must form a reference class for the generation of an outside view (Kahneman
2011; Flyvbjerg 2016). In contrast to optimistic bias detection (the classical use case of the outside view) (Landwehr et al.
2020), the effects of ISMT and events on siltation are paramount in the present paper.

Hence, a value that is based on a high variance is not recommended (such as inactive volume siltation objectives
(Landwehr et al. 2020)). Rather, a stable relative value is needed. Therefore, siltation with respect to the whole reservoir

volume is chosen as a comparative parameter for the formation of the desired reference class. To determine whether an
event category indeed reduces or enforces siltation across a high variety of reservoirs, the impact of the event category
must be detached from other key data. This is a highly complex mass data analysis process for which ANNs are suitable tools.
2.4. Applied GRU network and its hyperparameters

As described in Section 2.2.1, GRU layers proved to be a highly promising tool for time-series prediction data characteristic

detection. They are even a valid alternative to the often-used LSTM units. In various cases, GRUs yielded better results due to
their less complex operational structure (Che et al. 2016; Gao & Glowacka 2016; Wielgosz et al. 2017).

The ANN that was designed for this study consists of bidirectional GRU layers for preserving both past and predicted fea-
tures of the LSTM. At this stage, underfitting (Allamy 2014) and overfitting (Allamy 2014; Zhang et al. 2018) issues are

addressed with two dropout layers (Park & Kwak 2017). This is followed by a simple time-distributed fully connected
layer. This serves to analyze each of the GRU outputs in time-series order. The output is followed by a flattening layer
that reduces the dimension, which is necessary for generating the desired target value output. The network is concluded

by two fully connected layers, which generate the output for the target value. The structure is illustrated in Figure 8. As
the dropout and flattening layers do not consist of their own parameters, they are displayed in an in-between style.

ANNs are subject to hyperparameters that regulate them (see Table 2). These hyperparameters have a tremendous influ-

ence on the ANN performance (Nisbet et al. 2017; Michelucci 2018). For ANN design, setting of the hyperparameters is
one of the most challenging steps (Claesen & Moor 2015).

To select the optimal operation environment for this study, the best-performing hyperparameters were chosen using an

iterative cross-validation hyperband random search process (Jiang & Chen 2016; Li et al. 2018). In three attempts, the
root-mean-square error (RMSE), valorization accuracy (Val-Acc) and Kullback–Leibler divergence (KLD) (Clim et al.
2018) were utilized as statistical guidance for the iterative optimization process. The promising median absolute deviation
(MAD) was not used due to technical limitations (Gorard 2013; Landwehr et al. 2020).

While the Val-Acc and KLD optimizations did produce underfitted and, thus, not useful results, RMSE optimization pro-
duced hyperparameters that led to a promising low validation loss and, hence, a satisfactory fit for R0 (see Section 2.2). The
obtained hyperparameter values are listed in Table 2. They led to a network with 4,148,271 trainable values that were

expected to be capable of deriving the desired information according to Figure 3.
Figure 8 | A simplified version of the developed network. FC, fully connected.
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Table 2 | Overview of cross-validated hyperband random-searched hyperparameters

Hyperparameter

1st GRU-layer size 542

2nd GRU-layer size 242

Time-distributed-layer size 242

Fully connected-layer size 100

1st GRU-layer activation ReLU

2nd GRU-layer activation ReLU

Time-distributed-layer activation ReLU

Fully connected-layer activation ReLU

1st dropout-layer percentage 0.45

2nd dropout-layer percentage 0.35

Optimizer Nadam

Learning rate 0.000443

Loss MSE

Batch size 242

Epochs 61

ReLU, rectified linear unit (Nwankpa et al. 2018); Nadam, Nesterov-accelerated adaptive moment estimation (Ruder 2017); MSE, mean squared error.
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2.5. Metrics for GRU and result performance

The validation loss was selected as a metric for evaluating the training optimization. The ANN uses a loss function to measure

and subsequently reduce the difference between the produced prediction and the already known results (Wang et al. 2018), as
indicated in Section 2.2. The validation loss is calculated from the separated 9% of the data, which is provided to the network
in each iteration. The lower the validation loss is, the better the network adapts to unknown data such as the test data. A

perfect zero-loss match is, however, undesirable, as it would indicate overfitting on the validation data set (Allamy 2014;
Zhang et al. 2018), thereby demonstrating that the internal training data variance is likely not sufficient for the creation of
a highly adaptive network.

Hindcast emulations for each original or artificially produced reservoir data item of the test set are expected as results. With

the hindcast approach, known data are treated as new data for the prediction of future data – with the real result used as a
measure for control. In the case of a satisfactory match between the emulation and the original data, the general capability of
emulating completely unknown data or completing forecasting tasks is demonstrated. Alongside the validation loss, the hind-

cast match comparison evaluates the general functionality of the trained neural network.
To examine the effects of the event categories, a semi-randomly selected variance of the original reservoir data was modi-

fied and retested. The only criteria were that selected decades of reservoir erection and all volume sizes of reservoirs were

included in each possible combination within the selection; therefore, it was semirandom.
The data modification was restricted solely to the event categories. For each reservoir, the original event annotations were

deleted, and an ‘injection’ of each event from the 14 event categories was undertaken for the period between 2007 and 2011.

The neural network, which was trained on the original training data, subsequently executed an emulation for each of the
modified reservoir data sets, namely, 15 (14 categories plus the original data) times 19 (five size categories times four selected
decades minus one nonexistent combination) emulations were conducted. The process is illustrated in Figure 9.

The results were compared to the original data via a simple absolute median of the deviations. The median was selected

because it reduces – in contrast to the average – the influence of outlier values on the statistical outcome.
Each of the event categories represents a unique distribution across the reservoirs. As the modified and original emulation

data distributions reflect connected but not normally distributed data distributions, a Wilcoxon signed-rank test was con-

ducted (Wilcoxon 1945) between the original distributions and those for each event category.
In case of significance, the null hypothesis that the modified and original data are of the same distribution, namely, that the

event categories have no effect, would be rejected. The simple average would reflect the relative impact of each event category
://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
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Figure 9 | Manipulation of the event categories causes the trained network to produce different hindcasts. The difference reflects the impact
on siltation that the trained network has learned for the corresponding effect.
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compared to the original distribution. This would imply that the neural network could actively derive and learn from the data
whether each event category has an individual effect. Thus, interference by other side effects (other data) could be excluded.
This concludes the methodological process of the present paper, as illustrated in Figure 4.
3. RESULTS

The data categories that were used for the training and testing of the network were event categories, reservoir size, precipi-
tation for each month, year and initial sedimentation to the whole volume.

Variations (e.g., for batch size or epochs) of the hyperparameter optimal values from Section 2.4 were evaluated to obtain a

better validation loss result. Nevertheless, the originally produced hyperband random-searched values proved to produce one
of the best results with a validation loss of 0.3724 after 61 epochs. Better results from other configurations were insignificantly
better, which is why the hyperband-optimized configuration was chosen for further analysis.

The network is designed to produce 15 emulations for each reservoir, namely, 15 hindcasts. With each new reservoir from
the data, the network starts a new 15-step emulation turn. To display them more clearly, the emulations were structured lin-
early one after each other, as shown in Figure 10.

A hindcast match comparison and the validation loss demonstrated that the GRU network can predict convincingly on
completely unknown reservoirs with extremely different configurations. It has learned to derive complex information from
an extremely reduced essential data pool.

The subsequent objective was to disentangle the information and identify the influence of the network that was learned

from the data for the event categories. This was conducted according to Section 2 and Figure 3.
Examples of the randomly selected reservoir cases and the respective influence of the ‘event category injections’ are pre-

sented in Figure 11. It is emphasized that Figure 11 represents an illustrative selection from the selection that followed the

methodology explained in Section 2.5 and Figure 9. As the circumstances of each reservoir are highly individual, As the cir-
cumstances of each reservoir are highly individual, so are the ‘injection’ effects for each reservoir sedimentation emulation.
They are ‘small pictures’.
om http://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
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Figure 10 | Emulations of sedimentation to whole volume for 32 reservoirs in a randomized order. For every 15 time steps, a new reservoir is
represented.

Journal of Hydroinformatics Vol 24 No 2, 235

Downloaded from http
by KYOTO UNIVERSI
on 28 November 2023
For example, the effect of ‘Floods/Typhoons’ on the rather recently inaugurated Urayama dam (浦山ダム) in Saitama is
judged to be far more beneficial than in the three other and older dams, as presented in Figure 11. A reason for this might

be ‘sluicing’, which might use more on novel dams. ‘Sluicing’ is debated in detail in Section 4.3.
The ‘big picture’ and the event category effect are just to be revealed with the overall statistical analysis and evaluation of all

‘injection’ cases below.
The effects of the event category ‘injections’ differ in terms of both extent and shape among the types of reservoirs. Accord-

ing to Section 2.5 and Figure 9, the event manipulation was established between 2007 and 2011. In concordance, no
deviation effects from the original hindcast are visible before time step four in Figure 11. However, the influence of events
continues to affect the hindcast for almost all subsequent time steps.

The effects are identified using the simple absolute median of the deviation from the original data, as described in Section
2.5. The null hypothesis is rejected for all 14 ‘injections’ with very high confidence in most cases, as the Z-values ranged far
outside the quantile values (+1.96 for 95% confidence).

Table 3 presents the effect that the GRU network has learned from the data for each event category with the methodology
that is described in Section 2.5. The lower the absolute median deviation is, the larger the reduction in siltation per whole
volume. The values are specified as percentages in comparison to the originally assigned event categories. For example, in

the case of dredging, the median for the 19 emulation cases was 0.316% lower than the original hindcast of the GRU emula-
tion. For reservoirs like the ones of the Tsuruta Dam (鶴田ダム) or the Honna Dam (本名ダム) from Figure 2, which both
have roughly 8,000–9,000 m of sedimentation in 2017, this would mean 25,000 m less than sediment, which is roughly the
plenary hall of the German Bundestag (Albers 1999). Thus, the median reduction via dredging is considerable.

The key message of Table 3 does, however, not reside within their absolute values but in the relation of the values to each
other. Hence, according to the GRU network, dredging has a 29% higher impact on the reduction in siltation per whole
volume than spilling (see column RM of Table 3).
4. DISCUSSION

The results provide compelling insight into the sedimentation management effect, as this is – to the best of the authors’ knowl-

edge – one of the few, if not the only, mass data studies of siltation. However, the results are not entirely intuitive and, thus,
are subject to discussion. In addition, the ANNs and the data input are worth discussing in order to better understand the
current and optimize future research.
://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
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Figure 11 | Examples of the randomly selected reservoir cases: comparison of the originals with the 14 ‘event category injections’.
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4.1. Event categories

Table 3 presents the efficiency of the GRU network for each event category. Before debating the implications of the results for
various categories, it is important to closely examine the underlying data of the events.
4.1.1. Interpretation conflicts

The events are not a homogeneous mass. The MLIT received the event annotations from the operators.
om http://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
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Table 3 | Deviations among the semirandomly selected and event-manipulated reservoirs

AMD RM Event category Wilcoxon Z-value

�0.31613 100.00000 Dredging �5.68605

�0.30385 96.70048 Measurement error �10.73597

�0.21024 71.54733 Spilling �1.75157

�0.20797 70.93692 Sediment relocation �8.60382

�0.14126 53.01029 Alteration of dam Volume/height �5.19799

�0.13491 51.30526 Bypass �6.58629

�0.13016 50.02848 Flood/typhoon �1.92266

�0.07428 35.01180 Upstream dam Installation �2.99249

�0.06804 33.33494 Management change �5.92457

�0.02223 21.02507 Unknown �1.94327

�0.01540 19.19086 Drought �3.54715

�0.00069 15.23878 Termination of the reservoir �2.16655

0.02835 7.43600 New Observation/calculation method �1.89072

0.05602 0.00000 Eearthquake �1.94858

AMD, absolute median deviation for sedimentation to whole volume in percent; RM, relative median, i.e., ranking of the lowest AMD (100%) compared to the highest AMD (0%);

Wilcoxon Z-Value, approximation for critical values of the Wilcoxon signed-rank test to the normal deviation for n. 20 test values (Gibbons & Chakraborti 2011).
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The MLIT has improved the format and standardization of siltation data over the years. The event annotations, however,
are only vaguely standardized.

This has the advantage that operators can individually describe the highly diverse characteristics of reservoirs and events

within Japan. However, the substantial variance of the descriptions from the operators often leaves excessive room for
interpretation.

For example, the 2010 event notification葦繁茂によりダム内への土砂流入をせき止めた – Reed growth prevented sediment
from flowing into the dam of the Amagime (天君) reservoir in the Kumamoto Prefecture is the source of the following
interpretation problems:

1. The notification could be incorporated into a larger category, namely, Landscape Management. Landscape management
for sediment entry reduction is a hot topic for reservoirs (Sumi & Kantoush 2011; Kondolf et al. 2014). However, it is
unclear whether other operators mention landscape management practices when they carry them out. In fact, the event
notifications regarding landscape management were scant for the whole data set. It can thus be doubted that every land-

scape management practice was notified.
2. The reaction to the notification remained unclear. Was the reed cut? Was more reed planted? Certainly, there was a reac-

tion, but its nature remains unknown.

In the end, the Amagime notification was included in the category Management Change. This is correct, as a management
change was made. Nevertheless, as the true nature of the change is unclear, the probability that the effect of the Amagime

measure conflicts with other entries of the Management Change event category is high. This might explain the modest
effect that the GRU network derived for the Management Change category. Management Change might be much more effi-
cient than indicated by the present paper, but event interpretation conflicts cause internal ambiguity.

Those types of interpretation conflicts did not prevail for the data set, but they were also not rare among the 1,224� 18¼
22,032 possible event entries. Thus, the event categories are not free from impurities. The event reporting and its implications
could be better, but the MLIT data in their current form already provide unique and valuable pieces of information.
4.2. Restricted occurrence

Various events suffered from significant application restrictions. A paramount example of this is the category bypass, which
only has two occurrences within the data set. A bypass is presumed to be a highly impactful sediment management strategy
://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
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(Boes et al. 2014; Auel 2018). However, it is subject to tremendous application costs due to its complex construction charac-

teristics (Morris 2020). This limits the application of this strategy drastically, as the data set demonstrates.
Due to the uniqueness and promising outlook of the technology for future applications (Morris 2020), it was decided to

keep the bypass as a highly unique event category. The limitation effect was reduced by the application of the TSAUG meth-

odology (Section 2.3). Disproportionate augmentation of the bypass cases was also considered, but it was decided that the
base data restriction would contort the actual results too severely in this case. Nevertheless, it is clear that the base data
restriction influenced the interpretation of the GRU network. Thus, the AMD and RM values are highly indicative of the
bypass class.

The bypass case is an extreme example. Most of the other categories are founded on substantially more base data (several
dozen to hundreds of event entries).

4.3. Spilling, sluicing, floods and typhoons

Spilling (流出–Ryuushutsu), which is also referred to as flushing, is among the most common sediment management tech-
niques (Kantoush & Sumi 2017; Morris 2020). It is conducted by elevating the hydraulic scour. Although the definitions

partially overlap, it should not be confused with sluicing, which typically involves the utilization of naturally occurring floods.
Interestingly, Spilling is considered to have substantially less impact than dredging, which is also often applied and which

the GRU network found to be most efficient in sediment reduction.

Sluicing, in contrast, was not assigned its own category. This is due to two reasons:

1. It is sometimes treated homologously to Spilling by operators.

2. Flood events are used for sluicing, but depending on the type and fierceness of the flood (or typhoon) and the type of reser-
voir, sediment reduction or successful application of the sluicing technique is not always guaranteed. Thus, after flood
event notifications, a sediment rise or decrease is observed within the data set. Nevertheless, it is impossible to distinguish
flood events with sluicing from those without sluicing, as the information that is provided by the operator is restricted.

Therefore, the category was named Flood/Typhoon. Its data are not completely consistent. Nevertheless, it insinuates that
Japanese operators are prepared to use (extreme) flood/typhoon events for sluicing since the overall GRU result demonstrates

a reduction in sedimentation to the whole volume due to floods/typhoons.

4.4. Measurement errors, sediment relocations and new observation/calculation methods

Events need not always be intended or be of vis major. Frequent errors or unforeseen developments due to technological
improvement impact sediment statistics. Three event categories are exemplary:

1. Measurement error: This is one of the most frequently occurring event entries. Hence, even in highly organized countries
such as Japan, absolute certainty regarding data is not guaranteed. Moreover, it demonstrates that Japanese authorities and
operators are willing to admit errors so that correct data can be obtained and higher operational sustainability realized.

Interestingly, new measurements frequently insinuate overestimation errors in prior measurements.
2. Sediment relocation: Notification of this event was frequent. This is assumed to be due to the occurrence of floods/

typhoons or the use of new observation/calculation methods. Additionally, it is possible that 堆砂移動 – Sediment Reloca-
tion is used as a filler declaration when the real reasons are unknown.

3. New observation/calculation methods: This event occurs frequently when advancing to more sophisticated bathymetric
techniques (Balan et al. 2013; Kantoush & Sumi 2017; Adebayo Olubukola et al. 2020). Measured values can significantly

deviate from previous values.

4.5. Data input

The data were gathered under the objective of universal applicability: the objective was to obtain a result of high significance

without the necessity of assembling data that are not available in many countries due to restrictive governance structures
(Pahl-Wostl 2015). Thus, more accurate results are likely to be obtained with more data input.

However, the present paper demonstrates that highly promising results can already be produced with only a handful of

influential factors.
The exact relation between most of the data and event categories remains a subject for further investigation (e.g., whether

there is a satisfactory correlation between flood/typhoon events and the precipitation data and its impact on sedimentation).
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4.6. Networks

There are many approaches that might lead to advanced ANNs that can yield more accurate results. LSTM layers are a poss-
ible alternative for GRU layers, and convolution and average pooling layers are also interesting approaches for information

extraction (Tang et al. 2020). The same might be true for a more extensive use of time distribution layers.
Another opportunity to generate more realistic artificial data is assumed to lie within the use of generative adversarial net-

works, which have already produced convincing results for artificial image generation (Han et al. 2019; Islam & Zhang
2020).

The ANN opportunities are vast and were partially evaluated in this study. The eventually utilized GRU network proved to
be the most reliable network that yielded the best results with the resources that were available at the time of the study.
5. CONCLUSIONS AND OUTLOOK

The presented methodology has high potential for scenario testing of management strategies. The impacts of highly complex
technologies on sedimentation comportment can be tested with moderate effort and data demand to realize hindcasts with

satisfactory performance. The foundation of real data corresponds to the outside view and reference class that are demanded
by Kahneman (2011) and Flyvbjerg (2016) for grand infrastructures.

Reservoirs are objects of high variance for multiple reasons, which range from climate and purpose to technology. Conse-

quently, the individual characteristics of reservoirs play a key role in classical sediment development analysis. However, the
ANNmethodology enables both the derivation of conclusions from the big general picture of several hundred to thousands of
reservoirs and attribution to individual factors. This is the main advantage of the presented methodology. Engineering can

benefit from this research directly as the mass data approach can reveal for which case certain anti-sedimentation strategies
like spilling gates or bypass tunnels are more effective and would thus justify this high-cost investment. Hence, planning
would gain another key tool to optimize existing and future dams based on results and experiences derived from well-trained
neural networks. Nonetheless, the presented methodology cannot replace highly detailed individual reservoir analysis. The

ANN methodology is a useful supplement.
In the special case of Japan, continuation and enhancement of the data set are paramount. More details for the event cat-

egories might be revealed if operators are approached directly (however, this is connected with a very high workload).

The potential power that governmental approaches possess is emphasized. Governmental and management structures and
decisions may strongly influence sediment accumulation and, thus, the longevity of reservoirs. They incorporate the smart
design and application of sediment technological countermeasures, such as spilling, dredging, sluicing or bypassing, that

the results demonstrate to be efficient. They also incorporate adaptive measures, such as the modernization and realization
of observation and control (measurement errors and new observation/calculation methods) and the formation of new man-
agement structures (management change). Overall, the results demonstrate that technological progress cannot exert its full
effect if it is not supported and distributed by overarching governmental and management structures.

Further investigation of the data set with other approaches is necessary. Additional data classes are likely to provide further
insight into various research questions, e.g., with respect to landscape management. Upcoming multivariate, multi-time-series
approaches with various ANN methodologies will produce even more detailed findings. Especially the presumed opportu-

nities of general adversarial networks (GAN) to mimic naturally existing data sets are emphasized. A breakthrough GAN
study regarding data structures would facilitate data enhancement in a supposedly more natural manner.

Since the proposed approach is based on a reduced variety of data input, global applicability is assumed. Countries with

scant data availability can benefit from either the methodology or pretrained networks.
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Clim, A., Zota, R. D. & TinicĂ, G. 2018 The Kullback-Leibler divergence used in machine learning algorithms for health care applications

and hypertension prediction: a literature review. Procedia Computer Science 141, 448–453. The 9th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2018)/The 8th International Conference on Current and Future Trends
of Information and Communication Technologies in Healthcare (ICTH-2018)/Affiliated Workshops.

de Meer Pardo, F. 2019 Enriching Financial Datasets with Generative Adversarial Networks.
de Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Rompaey, A. v., Arabhkhedri, M. & Boix-Fayos, C. 2013 Predicting soil

erosion and sediment yield at regional scales: where do we stand? Earth-Science Reviews 127, 16–29.
Dogmus, Ö. C. & Nielsen, J. 2019 Is the hydropower boom actually taking place? a case study of a south east European country, Bosnia and

Herzegovina. Renewable and Sustainable Energy Reviews 110, 278–289.
Elsworth, S. & Güttel, S. 2020 Time Series Forecasting Using LSTM Networks: A Symbolic Approach.
Flyvbjerg, B. 2016 How to get your business case right, by using kahneman’s outside view. SSRN.
Fu, R., Zhang, Z. & Li, L. 2016 Using LSTM and GRU neural network methods for traffic flow prediction. In: 2016 31st Youth Academic

Annual Conference of Chinese Association of Automation (YAC). pp. 324–328.
Gamboa, J. C. B. 2017 Deep Learning for Time-Series Analysis.
Gao, Y. & Glowacka, D. 2016 Deep Gate Recurrent Neural Network.
Ghimire, G. & DeVantier, B. 2016 Sediment Modeling to Develop a Deposition Prediction Model at the Olmsted Locks and Dam Area.

pp. 410–420.
Gibbons, J. D. & Chakraborti, S. 2011 Nonparametric Statistical Inference. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 977–979.
Gorard, S. 2013 The possible advantages of the mean absolute deviation ‘effect’ size. Social Research Update 65, 1.
Han, C., Rundo, L., Araki, R., Nagano, Y., Furukawa, Y., Mauri, G., Nakayama, H. & Hayashi, H. 2019 Combining noise-to-image and image-

to-image GANs: brain MR image augmentation for tumor detection. IEEE Access 7, 156966–156977.
Hao, C.-F., Qiu, J. & Li, F.-F. 2017 Methodology for analyzing and predicting the runoff and sediment into a reservoir. Water 9 (6), 440–456.
Haregeweyn, N., Tsunekawa, A., Tsubo, M., Meshesha, D., Poesen, J., Nyssen, J. & Deckers, J. 2013 Reservoir sedimentation and its

mitigation strategies: a case study of the Ethiopian highlands. In Hydro13 Proceedings. p. 8.
Islam, J. & Zhang, Y. 2020 GAN-based synthetic brain pet image generation. Brain Informatics 7, 231–247.
Jiang, P. & Chen, J. 2016 Displacement prediction of landslide based on generalized regression neural networks with k-fold cross-validation.

Neurocomputing 198, 40–47.
Kahneman, D. 2011 Thinking, Fast and Slow. Farrar, Straus and Giroux, New York.
Kantoush, S. & Sumi, T. 2010 River Morphology and Sediment Management Strategies for Sustainable Reservoir in Japan and European Alps.

p. 53.
://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
TY user

http://dx.doi.org/10.1016/j.jksues.2016.01.003
http://dx.doi.org/10.1016/j.jksues.2016.01.003
https://www.hs-esslingen.de/fileadmin/media/Fakultaeten/gu/Forschun&gdot;und&dot;Labore/Veroeffentlichungen/Besonderheiten&dot;der&dot;raumlufttechnischen&dot;Anlag&edot;des&dot;Plenarsaals&dot;im&dot;umgebauten&dot;Reichssta&gdot;Berlin.pdf
https://www.hs-esslingen.de/fileadmin/media/Fakultaeten/gu/Forschun&gdot;und&dot;Labore/Veroeffentlichungen/Besonderheiten&dot;der&dot;raumlufttechnischen&dot;Anlag&edot;des&dot;Plenarsaals&dot;im&dot;umgebauten&dot;Reichssta&gdot;Berlin.pdf
https://www.hs-esslingen.de/fileadmin/media/Fakultaeten/gu/Forschun&gdot;und&dot;Labore/Veroeffentlichungen/Besonderheiten&dot;der&dot;raumlufttechnischen&dot;Anlag&edot;des&dot;Plenarsaals&dot;im&dot;umgebauten&dot;Reichssta&gdot;Berlin.pdf
https://www.hs-esslingen.de/fileadmin/media/Fakultaeten/gu/Forschun&gdot;und&dot;Labore/Veroeffentlichungen/Besonderheiten&dot;der&dot;raumlufttechnischen&dot;Anlag&edot;des&dot;Plenarsaals&dot;im&dot;umgebauten&dot;Reichssta&gdot;Berlin.pdf
https://www.hs-esslingen.de/fileadmin/media/Fakultaeten/gu/Forschun&gdot;und&dot;Labore/Veroeffentlichungen/Besonderheiten&dot;der&dot;raumlufttechnischen&dot;Anlag&edot;des&dot;Plenarsaals&dot;im&dot;umgebauten&dot;Reichssta&gdot;Berlin.pdf
https://www.hs-esslingen.de/fileadmin/media/Fakultaeten/gu/Forschun&gdot;und&dot;Labore/Veroeffentlichungen/Besonderheiten&dot;der&dot;raumlufttechnischen&dot;Anlag&edot;des&dot;Plenarsaals&dot;im&dot;umgebauten&dot;Reichssta&gdot;Berlin.pdf
http://dx.doi.org/10.1016/j.procs.2018.10.144
http://dx.doi.org/10.1016/j.procs.2018.10.144
http://dx.doi.org/10.1016/j.rser.2019.04.077
http://dx.doi.org/10.1016/j.rser.2019.04.077
http://dx.doi.org/10.1109/ACCESS.2019.2947606
http://dx.doi.org/10.1109/ACCESS.2019.2947606
http://dx.doi.org/10.3390/w9060440
http://dx.doi.org/10.1186/s40708-020-00104-2
http://dx.doi.org/10.1016/j.neucom.2015.08.118


Journal of Hydroinformatics Vol 24 No 2, 241

Downloaded from http
by KYOTO UNIVERSI
on 28 November 2023
Kantoush, S. A. & Sumi, T. 2017 The Aging of Japan’s Dams: Innovative Technologies for Improving DamsWater and Sediment Management,
River Sedimentation.

Kantoush, S. A. & Sumi, T. 2019 Paradigm Shift for Sediment Management. Available from: https://www.waterpowermagazine.com/
features/featureparadigm-shift-for-sediment-7263873/ (accessed 23 December 2019).

Koehrsen, W. 2018 An Implementation and Explanation of the Random Forest in Python. Available from: https://towardsdatascience.com/
an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76 (accessed 2 January 2021).

Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., Cao, Y., Carling, P., Fu, K., Guo, Q., Hotchkiss, R., Peteuil, C.,
Sumi, T., Wang, H.-W., Wang, Z. & Wei, Z. 2014 Sustainable sediment management in reservoirs and regulated rivers: experiences from
five continents. Earth’s Future 2, 256–280.

Landwehr, T., Kantoush, S. A., Pahl-Wostl, C., Sumi, T. & Irie, M. 2020 The effect of optimism bias and governmental action on siltation
management within Japanese reservoirs surveyed via artificial neural network. Big Earth Data 4 (1), 68–89.

Lee, H.-Y., Lin, Y.-T. & Chiu, Y.-J. 2006 Quantitative estimation of reservoir sedimentation from three typhoon events. Journal of Hydrologic
Engineering 11 (4), 362–370.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A. 2018 Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization.

Michelucci, U. 2018 Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks.
Morris, G. 2020 Classification of management alternatives to combat reservoir sedimentation. Water 12 (3), 861.
Morris, G. L. & Fan, J. 1998 Reservoir Sedimentation Handbook, Vol. 1.01. McGraw-Hill Book Co, New York, NY.
Nisbet, R., Miner, G. & Yale, K. 2017 Handbook of Statistical Analysis and Data Mining Applications, 2nd edn. Academic Press, Inc.,

Orlando, FL, USA.
Nuttall, A. H. 1981 Some Windows with Very Good Side-Lobe Behavior.
Nwankpa, C., Ijomah, W., Gachagan, A. & Marshall, S. 2018 Activation Functions: Comparison of Trends in Practice and Research for Deep

Learning.
Oehy, C. 2003 Effects of obstacles and jets on reservoir sedimentation due to turbidity currents, Ph.D. thesis, No. 15, Swiss Federal Institute of

Technology, Lausanne, Switzerland. https://infoscience.epfl.ch/record/116164
Omer, A. Y. A., Ali, A. S. A., Roelvink, J. A., Paron, P. & Crosato, A. 2015 Modelling of sedimentation processes inside Roseires Reservoir

(Sudan). Earth Surface Dynamics 3, 223–238.
Pahl-Wostl, C. 2015 Water Governance in the Face of Global Change: From Understanding to Transformation.
Pandey, A., Chaube, U., Mishra, S. & Kumar, D. 2016 Assessment of reservoir sedimentation using remote sensing and recommendations for

desilting Patratu Reservoir, India. Hydrological Sciences Journal 61 (4), 711–718.
Park, S. & Kwak, N. 2017 Analysis on the Dropout Effect in Convolutional Neural Networks. pp. 189–204.
Petneházi, G. 2019 Recurrent Neural Networks for Time Series Forecasting.
Pousse, E. & Latouche, D. 2018 Transforming Our World: The 2030 Agenda for Sustainable Development. Working Papers, Network of

African Local Government Financing Institutions (RIAFCO).
Ruder, S. 2017 An Overview of Gradient Descent Optimization Algorithms.
Schleiss, A., De Cesare, G. & Althaus, J. J. 2010 Verlandung der Stauseen gefährdet die nachhaltige Nutzung der Wasserkraft. Luft, Wasser,

Energie. https://infoscience.epfl.ch/record/147714.
Schleiss, A., Franca, M., Juez, C. & De Cesare, G. 2016 Reservoir sedimentation. Journal of Hydraulic Research 54, 1–20.
Schmidhuber, J. 2014 Deep learning in neural networks: an overview. Neural Networks 61, 85–117.
Simoes, F. J. M. & Yang, C. T. 2006 Sedimentation Modeling for Rivers and Reservoirs. USGS, Reston, VA.
Smith, J. O. 2011 Spectral Audio Signal Processing. Available from: http:http://ccrma.stanford.edu/jos/sasp///ccrma.stanford.edu/~jos/sasp/

. online book, 2011 edition.
Stähly, S., Franca, M., Robinson, C. & Schleiss, A. 2019 Sediment replenishment combined with an artificial flood improves river habitats

downstream of a dam. Scientific Reports 9 (1), 5176–5184.
Stekhoven, D. J. & Bühlmann, P. 2011 Missforest – non-parametric missing value imputation for mixed-type data. Bioinformatics 28 (1),

112–118.
Sumi, T. 2015 Comprehensive reservoir sedimentation countermeasures in Japan. In: International Workshop on Sediment Bypass Tunnels.
Sumi, T. & Kantoush, S. 2011 Sediment Management Strategies for Sustainable Reservoir. pp. 353–362.
Tang, W., Long, G., Liu, L., Zhou, T., Jiang, J. & Blumenstein, M. 2020 Rethinking 1D-CNN for Time Series Classification: A Stronger

Baseline.
Um, T. T., Pfister, F. M., Pichler, D., Endo, S., Lang, M., Hirche, S., Fietzek, U. & Kulic, D. 2017 Data augmentation of wearable sensor data

for Parkinson’s disease monitoring using convolutional neural networks. In: Proceedings of 19th ACM International Conference on
Multimodal Interaction (ICMI’17), Glasgow. ACM.

United Nations 2015 Transforming Our World: The 2030 Agenda for Sustainable Development. Working Papers, eSocialSciences.
Vanmaercke, M., Kettner, A. J., Eeckhaut, M. V. D., Poesen, J., Mamaliga, A., Verstraeten, G., Rãdoane, M., Obreja, F., Upton, P., Syvitski, J. P.

& Govers, G. 2014 Moderate seismic activity affects contemporary sediment yields. Progress in Physical Geography: Earth and
Environment 38 (2), 145–172.
://iwaponline.com/jh/article-pdf/24/2/223/1030453/jh0240223.pdf
TY user

https://www.waterpowermagazine.com/features/featureparadigm-shift-for-sediment-7263873/
https://www.waterpowermagazine.com/features/featureparadigm-shift-for-sediment-7263873/
https://www.waterpowermagazine.com/features/featureparadigm-shift-for-sediment-7263873/
https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76
https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76
https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76
http://dx.doi.org/10.1002/2013EF000184
http://dx.doi.org/10.1002/2013EF000184
http://dx.doi.org/10.1080/20964471.2020.1711632
http://dx.doi.org/10.1080/20964471.2020.1711632
http://dx.doi.org/10.1061/(ASCE)1084-0699(2006)11:4(362)
http://dx.doi.org/10.3390/w12030861
https://infoscience.epfl.ch/record/116164
http://dx.doi.org/10.5194/esurf-3-223-2015
http://dx.doi.org/10.5194/esurf-3-223-2015
http://dx.doi.org/10.1080/02626667.2014.993988
http://dx.doi.org/10.1080/02626667.2014.993988
http://dx.doi.org/10.1080/00221686.2015.1119209
http:http://ccrma.stanford.edu/jos/sasp///ccrma.stanford.edu/~jos/sasp/
http:http://ccrma.stanford.edu/jos/sasp///ccrma.stanford.edu/~jos/sasp/
http:http://ccrma.stanford.edu/jos/sasp///ccrma.stanford.edu/~jos/sasp/
http://dx.doi.org/10.1038/s41598-019-41575-6
http://dx.doi.org/10.1038/s41598-019-41575-6
http://dx.doi.org/10.1093/bioinformatics/btr597
http://dx.doi.org/10.1177/0309133313516160


Journal of Hydroinformatics Vol 24 No 2, 242

Downloaded from http
by KYOTO UNIVERSI
on 28 November 2023
Velásquez-Castro, K., Ingol-Blanco, E., Pehovaz-Alvarez, R. & Cruzado-Blanco, C. 2016 Assessment of Reservoir Sedimentation and
Mitigation Measures: A Case Study of Palo Redondo Reservoir.

Wang, H.-W., Kondolf, M., Tullos, D. & Kuo, W.-C. 2018 Sediment management in Taiwan’s reservoirs and barriers to implementation.Water
10 (8), 1034.

Wen, T. & Keyes, R. 2019 Time Series Anomaly Detection Using Convolutional Neural Networks and Transfer Learning.
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