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ABSTRACT
This study aims to examine three machine learning (ML) techni-
ques, namely random forest (RF), LightGBM, and CatBoost for
flooding susceptibility maps (FSMs) in the Vietnamese Vu Gia-Thu
Bon (VGTB). The results of ML are compared with those of the
rainfall-runoff model, and different training dataset sizes are uti-
lized in the performance assessment. Ten independent factors are
assessed. An inventory map with approximately 850 flooding sites
is based on several post-flood surveys. The inventory dataset is
randomly split between training (70%) and testing (30%). The
AUC-ROC results are 97.9%, 99.5%, and 99.5% for CatBoost,
LightGBM, and RF, respectively. The FSMs developed by the ML
methods show good agreement in terms of an extension with
flood inundation maps developed using the rainfall-runoff model.
The models’ FSMs showed 10–13% of the total area to be highly
susceptible to flooding, consistent with RRI’s flood map. The FSMs
show that downstream areas (both urbanized and agricultural)
are under high and very high levels of susceptibility. Additionally,
different sizes of the input datasets are tested to determine the
least number of data points having acceptable reliability. The
results demonstrate that the ML methods can realistically predict
FSMs, regardless of the number of training samples.
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1. Introduction

Floods are the greatest catastrophic natural disaster on a global scale. Because of their
short lag times, flash floods are more devastating than other types of flooding (Vinet
2008; Bui, Ngo, et al. 2019; Abdrabo, Kantosh, et al. 2022). Flash floods have the
highest mortality rates per event and are the leading cause of flood-related deaths in
developed countries, due to their high-speed flow and limited warning time,
(Jonkman and Kelman 2005; Ashley and Ashley 2008; Bisht et al. 2018; Esmaiel et al.
2022; Abdrabo et al. 2023). However, floods are more destructive in developing coun-
tries like Vietnam. Extreme fluctuations in storm patterns and global climate change
are the leading causes of the reported rise in flash floods (Hirabayashi et al. 2013;
IPCC 2014; Abdrabo, Saber, et al. 2022; Saber et al. 2022). Typhoons, tropical cyclo-
nes, extended coastal areas, and dense river networks are the primary causes of severe
flooding in Vietnam. It is also highly vulnerable to floods caused by extreme storms.
Vietnam is rated eighth among the top ten countries in weather events (Thao et al.
2020), where densely populated areas are more vulnerable to floods. Consequently,
continuous risks in human life and assets will always exist (Luu et al. 2021). Vietnam
is susceptible to natural disasters, with over 13,000 deaths and 1% of GDP lost annu-
ally in the last two decades. More than half of the country’s land area and population
are at risk of being affected by tropical cyclones and floods (World Bank report,
2010). Vietnam’s geography and location make it prone to the effects of climate
change (IPCC, 2007; Wang et al. 2010). For instance, In 2020, Central Vietnam was
hit by severe natural disasters that caused significant loss of life and damage to prop-
erty. 357 people died or went missing, 876 were injured, and over half a million
houses were submerged or damaged. The floods and storms also damaged infrastruc-
ture and hampered aid distribution. The estimated loss was around VND
35,180,997,000, making it the worst disaster to hit Central Vietnam in the past cen-
tury (The International Federation of Red Cross Red Crescent Societies 2022).
Additionally, The country’s agriculture heavily relies on fertile, low-lying regions that
benefit from normal flooding, but also renders them vulnerable to severe flooding
and crop damage (IPCC, 2007; Wang et al. 2010). Flash flood mitigation for risk
reduction and management requires efficient monitoring measures (Arora et al.
2021). Food susceptibility mapping is critical for scientists and governments world-
wide to keep cities and human settlements safe and resilient (Ali et al. 2020).

Several studies have been performed to forecast the likelihood of flooding events.
These studies can be divided into rainfall-runoff analysis, conventional analysis, and
pattern categorization (Tien Bui and Hoang 2017). The traditional analysis uses time-
series data an extended period obtained from rainfall stations to produce regression
models. The rainfall-runoff models (e.g. MIKE, PCSWMM 2D, HEC-RAS, etc.) deter-
mine the correlation between runoff and rainfall to calculate temporal and spatial
floods (Nguyen et al. 2015). In general, this task is complicated because of difficulties
in accessing affected areas, especially in developing countries; as a result, the hydro-
logical models’ performance may be compromised, and comprehensive observational
datasets are needed for the calibration and validation of models (Abushandi and
Merkel 2011; Abdrabo et al. 2020). Both groups have a significant deficiency: the lack
of required data frequently limits their applications and incurs substantial costs for
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data collection (Fenicia et al. 2014). On the other hand, the last group (pattern classi-
fication), uses machine learning (ML) models that utilize historical geological, envir-
onmental, and flood data. Accordingly, flood-prone areas are defined as flood and
non-flood classes (Bui, Ngo, et al. 2019). However, comparative studies and integra-
tion between these groups are lacking (Hsu et al. 1995; Demirel et al. 2009;
Humphrey et al. 2016; Yang et al. 2020).

Over the last 20 years, the application of ML methods for flood susceptibility fore-
casting has been extensively evaluated globally. As a result, the recent advancement of
ML methods has significantly improved flood modeling. Because of the ability of ML
techniques to capture information without making predetermined assumptions, pro-
cess complex datasets, and promptly provide high accuracy and reliable results, such
practices have become widespread (Arabameri et al. 2020; Costache, Popa, et al.
2020). Several articles have employed GIS techniques and remote sensing to develop
reliable flooding susceptibility maps (FSMs). ML models are currently associated with
GIS to address various hydrological and environmental issues (Akay and Taş 2020).
Logistic regression (LR), support vector machines (SVMs), Artificial neural networks
(ANNs), adaptive neuro-fuzzy inference system (ANFIS), and random forest (RF)
models are the most utilized in ML for FSM (Hong et al. 2018; Choubin et al. 2019;
Darabi et al. 2019; Costache, Hong, et al. 2020; Dodangeh et al. 2020; Shirzadi et al.
2020; Arora et al. 2021; Shahabi et al. 2021; Gharakhanlou and Perez 2023).

Ensemble and hybrid ML models have recently appeared, outperforming single
models’ accuracy predictions (Zenggang et al. 2021). Several ensemble ML techniques,
such as the alternating decision tree, bagging, dagging, reduced-error pruning tree,
naïve Bayes tree, logistic model tree, AdaBoost, J48 decision tree, and random sub-
space ensembles have been applied to enhance the predictive accuracy of the FSM
(Luu et al. 2021; Pham, Jaafari, et al. 2021; Tuyen et al. 2021). CatBoost, LightGBM,
and RF (Random Forest) models are popular machine-learning algorithms used in
various applications, including flood susceptibility modeling. While their effectiveness
has been demonstrated in other fields, their wide applicability in flood susceptibility
modeling remains limited (Saber et al. 2021; Aydin and Iban 2022; Seydi et al. 2022).
CatBoost and LightGBM are gradient-boosting algorithms designed to handle categor-
ical variables efficiently. It is known for its superior accuracy in classification tasks
and has been used successfully in flood susceptibility modeling (Saber et al. 2021),
especially in their simplicity of implementation and fast training speed. In the predic-
tion of flood susceptibility, LightGBM was found to have higher accuracy than other
algorithms such as random forest and gradient boosting (Aydin and Iban 2022).
Similarly, CatBoost has been reported to outperform other methods like Logistic
Regression and SVM (Support Vector Machine) (Seydi et al. 2022). RF is a popular
ensemble learning algorithm that uses decision trees to make predictions. Rivals of
these models are the Deep Learning techniques (CNN, LSTM, BI-LSTM, GRU,
Transformer, and their hybridization techniques). However, the major drawbacks of
these deep learning techniques include the requirement for longer historical data and
their complex architecture with multiple hyper-parameters to tune. The advantage of
the chosen classifier methods lies in their ease of implementation, fast training, and
high accuracy (ranging from 95.5% to 99.5%). Additionally, these methods do not
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require extensive historical data to select the optimal model parameters. Several stud-
ies have developed flooding susceptibility maps in Vietnam using ML, which can be
classified into three groups. The first evaluates the utilization of new ML models and
their ability to detect areas prone to floods. For instance, the AdaBoost, dagging, bag-
ging, and random subspace ensemble learning methods were combined with the
Partial Decision Tree (PART) classifier to develop new GIS-based ensemble methods
for FSM in the province of Quang Binh (Luu et al. 2021). (Nguyen et al. 2022) used
the hybridization of the relevance vector machine and coyote optimization algorithm
to generate FSM of the Gianh River watershed (Central Vietnam). The second group
attempts to overcome the limitations in the study’s numbers that utilize remote sens-
ing data to generate input variables for FSM despite the merits of using such available
data (Pham et al. 2019, 2010–2018). As such, (Dhara et al. 2020; Nguyen et al. 2020;
Nhu et al. 2020; Ngo et al. 2021) suggested a hybrid approach using remotely sensed
data with ML models for flooding susceptibility. The third group introduced a novel
deep learning neural network (DLNN) algorithm for FSM (Tien Bui et al. 2020), inte-
grating particle swarm optimization (PSO) and extreme learning machines (ELMs)
(Bui, Ngo, et al. 2019; Bui et al. 2020) along with a comparison between ML and
deep learning techniques (Pham, Luu, et al. 2021) for the same study area. ML tech-
niques have been utilized in previous studies in Vietnam for flood susceptibility map-
ping. However, there has been no exploration of the potential of two ML models
(CatBoost and LightGBM) in predicting flooding susceptibility in humid environ-
ments as in Vietnam.

Several ensemble methods to predict FFS have been used (Shahabi et al. 2021). ML
methods consist of multiple stages (Arora et al. 2021), including the preparation of
the inventory and influencing factors, as well as the assessment of the accuracy of the
ML model. Despite many FSM studies using ML techniques, most focus on the mod-
el’s accuracy. While a depth analysis of the used approach was not well explored.
Some limitations in this regard should be considered, such as the limited availability
of high-quality and comprehensive data, such as elevation data, hydrologic and
hydraulic data, land use and land cover data, and historical flood data. Additionally,
the diversity and complexity of flood mechanisms and the dynamic nature of floods
pose challenges to developing robust and accurate machine-learning models (Nguyen
et al. 2022). Another limitation is the lack of standardization and comparison across
different studies, which makes it difficult to compare and generalize results.

Moreover, they were not considered return periods in spatial modeling of the flood
because the selection of training and validation points has not been based on the
return periods due to a lack of hazard maps for each return period (Choubin et al.
2023). Additional to the previous limitations, two crucial aspects must be addressed;
1) the inventory flood/non-flood database, an essential part of developing the ML
model, must be better defined. A larger inventory dataset typically provides more
information about the environment and its susceptibility to flooding, which can
improve the accuracy of the machine learning models. However, there may be dimin-
ishing returns with a vast inventory dataset, where additional data points do not pro-
vide further information or improve the model performance. In general, the optimal
inventory dataset size will depend on several factors, such as the model’s complexity,
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the data’s quality, the spatial resolution of the inventory data, and the environmental
characteristics of the study area. Therefore, it is crucial to evaluate the performance
of the machine learning models for different inventory dataset sizes to determine the
optimal dataset size for the specific use case. To the best of our knowledge, no previ-
ous studies have addressed or analyzed the impact of inventory dataset size on the
accuracy of FSM results, except for one study that focused solely on predicting water
levels (Tiwari and Chatterjee 2010, 2) the generated FSM using the recently developed
system with ML should be validated using the conventional method (hydrological
and hydraulic modeling).

In the present study, we examined two ML models, the light gradient boosting
machine (LightGBM) and categorical boosting (CatBoost), for FSM for the first time
in humid regions after successful application in arid areas (Saber et al. 2021).
Previously, both methods had been applied to some applications. LightGBM, for
example, has been employed in some previous studies due to its accuracy in predic-
tions, short computational time, and exceptional prevention of overfitting problems.
Accordingly, our primary objectives are (1) to evaluate how practical the two ML
approaches (CatBoost and LightGBM) are for predicting flooding susceptibility in
humid environments (Vu Gia-Thu Bon basin in Vietnam); (2) to compare the results
of the two models used with those of the conventional RF method; (3) to test the
effect of the inventory datasets (number of points) on the accuracy of the results in
the study area; and (4) to compare the rainfall-runoff inundation (RRI) 2D hydro-
logical model with the proposed ML integrated models in terms of flood extent.

2. Study area

The River Basin of Vu Gia-Thu Bon (VGTB) (Figure 1) is one of the major river
basins in Vietnam, with a surface area of 10,350 km2 (RETA 2011). The land use
types in the basin are forest (47%), agriculture (26%), and pasture (20%) (Avitabile
et al. 2016). The climate in this basin is tropical monsoon, with two seasons: dry
summer (January-August) and wet winter (September-December). The basin’s topo-
graphic features are hilly mountainous areas, with approximately 60% of the basin
having an elevation of over 552m. The average annual rainfall varies significantly,
from 2000mm in the downstream regions to more than 4000mm in mountainous
areas. There are seasonal differences, with 65% to 80% of the annual rainfall between
September and December (RETA 2011). The rain in the eight months of the dry sea-
son is only 20–35% of the annual rainfall (Nauditt et al. 2017). Due to rainfall’s spa-
tial distribution, the VGTB basin’s runoff varies substantially across seasons. River
flow in this period accounts for around 62.5–69.2% of the total annual flow. The
impacts of both heavy rainfall and steep terrain usually lead to flash flooding.
Approximately 4–8 floods occur annually. Due to meteorological patterns such as
tropical depressions, typhoons, and cold air, the highest flood peak occurs in October
and November (Vu et al. 2011). According to the Quang Nam Province
Commanding Committee for Disaster Prevention, Search and Rescue report, the
number of fatalities and property losses caused by floods and storms has been grow-
ing, particularly in 2020 (Figure 2).
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There are two main sub-basins in the VGTB river system: Thu Bon Basin and the
Vu Gia Basin. The Quang Hue River connects both Rivers. The Vu Gia River starts
from the western slope of Kon Tum and flows towards the province of Quang Nam
and the city of Danang. It connects with the sea at the Cua Han estuary. The length
of the main river from the source to the Cua Han estuary is 204 km. At the same
time, the Thu Bon River originates from a mountain of 1500m in Kon Tum prov-
ince. The river length from the source to the Cua Dai estuary is 198 km.

The River Basin of VGTB has been chosen for a flood susceptibility mapping due
to its location, flood history, environmental factors, and socioeconomic factors. The
VGTB covers approximately 10,350 km2 in central Vietnam and is an essential water
source for the region. However, it is also one of the most flood-prone areas in the
country, experiencing major floods almost every decade. For example, in 2000 and
2009, the region experienced catastrophic floods that resulted in significant loss of life
and property damage (Luu et al. 2018).Steep mountain slopes, narrow valleys,

Figure 1. Location of the river basin of VGTB: (a) Vietnam Map, (b) flood inventory dataset map
for training and validation, (c) total annual precipitation of the entire basin, and (d) flooded and
non-flooded locations.
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typhoons, and extreme weather events exacerbate flooding in the region. The VGTB
revier basin includes both Quang Nam province (1.5 million in 2012 (UN Habitat
2013)) and Da Nang city (1.1 million in 2018 (United Nations Economic and Social
Commission for Asia and the Pacific 2018) is home to approximately 3 million peo-
ple, many of whom live in low-lying areas vulnerable to flooding. The region is also
an important agricultural center. The comprehensive flood susceptibility mapping in
the VGTB will help not only researchers but also decision makers understand the
situation of the region under the threat of flooding. The results will provide a guid-
ance for proposing effective measures to mitigate the impacts of flooding on both
human populations and the environment, in order to reduce the risks associated with
flooding in the region.

3. Methodology

This study’s methodology comprises multiple phases, as shown in the flowchart in
Figure 3. This methodology has two main parts. First, a flood inventory map is cre-
ated using 850 flooded spots. These spots were determined primarily through post-
flood assessments conducted after typhoons in 1999, 2006, 2007, 2009, 2013, and
2020. Non-flooded points (850) over the catchment were randomly selected using
GIS tools. Additionally, Ten commonly used independent flood susceptibility varia-
bles (FSFs) covering hydrological, topographical, geological, and landform characteris-
tics were considered for modeling. The flooding susceptibility influencing factors,
namely elevation, aspect, slope, hillshade, horizontal flow distance, plan curvature,
stream power index (SPI), geology, land use/land cover, and rainfall, were used to
define the linear relationship with other variables. In subsequent phases, the data was
divided into two sets using a random selection scheme: (70%) for training and (30%)
for testing. ArcGIS was used to create spatial maps for each flooding susceptibility

Figure 2. Number of deaths and property damage caused by storms and floods from 1997 to
2020 in the River basin of VGTB (source: Commanding Committee for Natural Disaster Prevention
and Control, Search and Rescue in Quang Nam Province).
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factor while keeping spatial resolution consistency in mind. Following that, two
approaches, the variance inflation factor (VIF) and the information gain ratio (IGR)
were used to investigate the significance of the influencing factors in flooding suscep-
tibility. The ML algorithms RF, CatBoost, and LightGBM were then implemented.
The accuracy of the ML models’ final results was assessed using various statistical
processes, including the most dominant area under the curve (AUC). Moreover, as
we have very high-quality observational flood locations, we tested the models to
check the different sizes of the training datasets (Figure 3). The final FSM developed
by the ML models was then compared with the flood inundation maps from the 2D
physical hydrological model regarding the flood extent.

3.1. Datasets

3.1.1. Flooding inventory datasets
The initial stage of flood susceptibility mapping identifies flood locations (points)
based on prior flood records using several sources, such as field surveys, remote sens-
ing data, and flood forecasting records (Tehrany et al. 2014; Wang et al. 2019; Band
et al. 2020; Esfandiari et al. 2020). The locations of future hazardous events might be
forecasted using previous information (Devkota et al. 2013; Tehrany and Kumar
2018). As a result, the fundamental phase of a flood susceptibility study is an examin-
ation of prior historical flood occurrences and their contributing elements (Masood
and Takeuchi 2012). The accuracy in selecting flood points is reflected in the model
accuracy for FSM (Tehrany et al. 2013; Arora et al. 2019). In this study, 1700 ground
control points (Figure 1) were identified for flooded (850) and non-flooded points
(850). Approximately 1250 were used for training and 450 for testing the models.

Figure 3. Methodology flowchart for flood susceptibility mapping.
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The flooded locations were compiled from historical flood records and post-flood
field surveys in 1999, 2006, 2007, 2009, 2013, and 2020 (Figure 1). Flood and non-
flood locations were assigned values 1 and 0, respectively. Using the random selection
approach, the points were divided into 70% for training to create the flooding predic-
tion model and 30% for testing the model’s performance and generalization abilities.

3.1.2. Spatial datasets (flood controlling parameters)
Identifying flood governing parameters for flooding susceptibility mapping is critical
and influences model accuracy (Kia et al. 2012). Runoff in a drainage system is influ-
enced by the watershed features, terrain, catchment area, land use types, and land
cover during floods (H€olting and Coldewey 2019). Generally, there are no uniform
and standard selection criteria for FSM controlling factors. The selection of flood-
controlling parameters depends on various factors such as the area’s location, topog-
raphy, hydrology, and human activities. Here are some common parameters used for
flood control, along with the justification behind their selection (Rahman, Chen,
Elbeltagi, et al. 2021; Rahman, Chen, Islam, et al. 2021b): (1) Watershed characteris-
tics: such as its size, shape, and slope, can affect the amount and speed of water run-
off, which can, in turn, affect flood risk. (2) River channel characteristics: such as
shape, width, depth, and roughness of a river channel can all affect how water flows
through it. (3) Topography data: such as elevation maps and terrain models, can help
identify areas more prone to flooding. (4) Land use and land cover: Human activities
such as urbanization, deforestation, and agriculture can alter the natural landscape
and affect flood risk. For example, urbanization can increase the number of impervi-
ous surfaces, leading to more runoff and higher flood risk. Land use and land cover
analysis can help identify areas where land use changes can be made to reduce flood
risk.

Depending on previous research and the features of the studied area (Rahman,
Chen, Elbeltagi et al. 2021; Rahman, Chen, Islam, et al. 2021), as well as the availabil-
ity of data, we were able to develop fifteenth flood governing indicators that include
topographic, geological, hydrological, and landform factors. The fifteenth indicators
are plan curvature, elevation, slope, aspect, horizontal and vertical distance from
streams, flow direction and accumulations, hillshade, SPI, rainfall, geology, NDVI,
and land use/land cover. After feature selection of such parameters (See section 3.2),
only ten parameters were considered as influencing features in this study. Using
ArcGIS, the data were developed in raster formats (Figure 4). All topographic factors
were constructed based on the spatial analysis of the MERIT digital elevation model
(Yamazaki et al. 2017). The terrain’s elevation had a spatial resolution of 3 s (90m at
the equator). It was created by removing the incorrect components from existing
digital elevation models (DEMs), such as Aw3D-30m v1 and SRTM3 v2.1. These data
are freely available and accessible at http://hydro.iis.u-tokyo.ac.jp/�yamadai/MERIT_
DEM/. Below are the details of this study’s considered flood-influencing parameters.

Elevation: According to (Tehrany et al. 2013), there is a clear correlation between
elevation and flooding, which makes lowland surfaces more susceptible to flooding
than higher ones (Khosravi et al. 2016). This implies that the likelihood of flooding
decreases with increasing topographic elevation (Youssef et al. 2016). The research
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area contains complicated topography characteristics, including very high elevations
up to 2600m and low altitudes ranging from 3m to 200m in the downstream section
of the basin and the coastline area, primarily residential and agricultural areas
(Figure 4a).

Slope: This is a significant factor influencing flooding (Khosravi et al. 2016; Tien
Bui et al. 2016; Meraj et al. 2018) because of its effect on water velocity and surface
flow (Torabi Haghighi et al. 2018). The study area’s slope varied from 0� to 70�

(Figure 4b).

Figure 4. Flood influencing factors: (a) elevation, (b) slope, (c) aspect, (d) plan curvature, (e) hill-
shade, (f) horizontal flow distance, (g) rainfall, (h) land use/land cover, (i) SPI, and (j) geology.
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Aspect: As stated by (Choubin et al. 2019), this aspect influences the hydrological
parameters. There is an indirect relationship between the aspects of floods owing to
their control over several geo-environmental factors, such as rainfall, vegetation, and
soils (Rahmati et al. 2016). When aspects receive a low intensity of sunlight, which
means more soil moisture, the moist slope will likely increase runoff, leading to
increased flooding risk (Yariyan et al. 2020). The aspect raster map was categorized
into ten classes from flat to the northwest (Figure 4c).

Plan curvature: Many researchers consider this an essential flood-controlling fac-
tor (Hong et al. 2018) and affect heterogeneity and hyporheic (Cardenas et al. 2004).
The different values of curvatures differentiate the areas of faster runoff from those
with slower runoff. While negative values cause an increase in runoff, positive values
decrease it. The surface runoff is affected by the shape of the slope, as zero curvature
(flat) and negative curvature (concave) have more potential for flooding than the con-
vex form (positive) (Tehrany et al. 2015, 2014; Shahabi et al. 2021). Concave slopes,
for instance, slow surface flow and increase filtering losses, while convex slopes do
precisely the opposite of concave slopes (Cao et al. 2016). The curvature map was
developed based on the DEM with three forms (concave, flat, and convex), and the
flat class was more dominant in the downstream area, as shown in Figure 4d.

Hillshade: A hill’s length and shadow are intertwined with its hillshade or top-
shade, which may affect where the surface flow converges (Aryal et al. 2003). Prior
research has shown minimal interest in topshade (Bui, Ngo, et al. 2019). Predicting
flooding vulnerability requires it after slope and elevation (Bui, Hoang, et al. 2019).
Figure 4e shows that toposhade was chosen as a flood influencing factor.

Flow distance: Any area’s likelihood of flooding is influenced mainly by distance
from major rivers or streams (Glenn et al. 2012). Typically, nearby streams are more
vulnerable to floods (Chapi et al. 2017). The farther away from rivers, the greater the
chance of floods. Floods are common in places near rivers, which have been stressed
as a primary influencing factor for flooding (Predick and Turner 2008; Bui et al.
2018; Darabi et al. 2019). According to Gigovi�c et al. (2017) and Gonz�alez-Arqueros
et al. (2018), the distance from streams is the primary conduit for surface flow.
ArcGIS calculated the horizontal flow distance for the current investigation using the
flow direction, flow accumulation, and DEM (Figure 4f.).

Rainfall: Precipitation is one of the triggering factors for flooding, as no rainfall
indicates a lack of flooding. The average rainfall was estimated between 2001 and
2019 using the PERSIANN Dynamic Infrared–Rain rate model (PDIR). Estimating
precipitation was done using remotely sensed information that utilizes ANNs
(Nguyen et al. 2020). It is a real-time global dataset with a high resolution of approxi-
mately (0.04� � 0.04�, or 4 km � 4 km, at (https://chrsdata.eng.uci.edu/). According
to the geographical maps, the average annual precipitation in the upstream and
mountainous parts is 3284mm, while 2235mm in the downstream.

Land use/land cover: The influence of this factor was confirmed using the global
cover map developed by the geospatial Japan information authority (https://www.gsi.
go.jp/kankyochiri/gm_global_e.html) and mainly from this website (https://global-
maps.github.io/glcnmo.html). Land use and land cover types were also considered as
controlling factors due to their influence on filtration and runoff velocity. The study
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area has approximately six classes (Figure 4h), including cropland, forest, grassland,
other lands, settlement, and water. The forest is the dominant type of land cover in
the mountainous area, especially upstream of the basins, and agricultural land and
urban areas are located in the downstream region.

Stream power index: This parameter indicates the power of erosion and dis-
charges within a specific area of the river system (Poudyal et al. 2010). Several
researchers have considered the SPI a flooding contributor because it indicates surface
flow. The highest values of SPI imply a fast flow of downstream water, which reveals
lower flooding susceptibility, and low values imply slow flow leading to more inunda-
tion (Tehrany and Kumar 2018). SPI was calculated based on a method derived from
Jebur et al. (2014). The present study area classified SPI into five classes (Figure 4i).

Geology: In terms of infiltration and flow velocity, this is a critical parameter.
Lithology data was given by the Land Use and Climate Change Interaction in Central
Vietnam (LUCCI) (Nauditt and Ribbe 2017). In terms of geological classification, it
has been subdivided into several different kinds with high variation in sedimentary,
igneous, and metamorphic rock types (Figure 4k).

3.2. Selection of flood influencing factors

The selection of controlling factors is an important stage in ML modeling for FSM.
the estimated capabilities of the model may be impacted by an inaccurate selection of
the hyperparameter values or redundancy (€Ozt€urk and Akdeniz 2000). As a result,
the feature selection procedure was based on Spearman’s rank correlation, the IGR,
and the multicollinearity test to identify irrelevant features.

3.2.1. Spearman’s correlation coefficient
The nonparametric Spearman rank correlation coefficient is used to show the
strength of the monotonic association between two variables, X and Y. From �1 to 1,
and the coefficient indicates more significant and weaker correlations. As the coeffi-
cient value approaches 0, the relationship between the two variables, X and Y,
becomes weaker. Correlation coefficient values above 0.7 imply considerable collinear-
ity (Tien Bui et al. 2016). According to this formula, the correlation coefficient is cal-
culated:

r x, yð Þ ¼ 1� 6
P

x� yð Þ2
n n2 � 1ð Þ (1)

where r refers to the correlation coefficient, x, and y are defined as the two variables,
and n is the length of each variable.

3.2.2. Multicollinearity test
Using Spearman’s coefficient, multicollinearity was examined between all contributing
elements and the correlations between two characteristics. The VIF was used in this
study’s multicollinearity analysis to identify any existing interrelatedness between vari-
ables. This element is frequently utilized in investigations of flood susceptibility (Bui
et al. 2019; Khosravi et al. 2019; Rahman et al. 2019), suggesting a threshold > 5 to
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consider multicollinearity. The relevant predictors are, however, deemed collinear in
other research if the VIF value is more than 10; hence it is advised to leave them out
of the models (Dou et al. 2019; Wang et al. 2019). Thus, we considered a value of
five as the threshold for selection. The independent predictors are specified as X ¼
fX1, X2,… , Xng and R2

j , and refer to the determination coefficient when the jth inde-
pendent predictor Xj is regressed on the other predictors. The following equation is
used to determine VIF:

VIF ¼ 1
1� R2

j
(2)

3.2.3. Information gain ratio
The IGR test assessed conditioning factors to determine their relative relevance in
floods (Quinlan 1986; Xu et al. 2013). The latter is one of the feature selection techni-
ques considered by many previous studies (Shahabi et al. 2021). When an input has
zero IGR, there is no correlation between the input and the output. This circum-
stance suggests that including such input in the model will not provide any informa-
tion; rather, it will create noise, reducing the model’s capacity for prediction.
Therefore, it is strongly advised that these elements be eliminated from the inputs.
Eq. (3) is used to compute the IGR.

IGR x,Zð Þ ¼
Entropy Zð Þ �Pn

i¼1
Zij j
Zj j Entropy Zið Þ

Pn
i¼1

Zij j
Zj j log

Zij j
Zj j

(3)

3.3. Machine learning methods

ML approaches are the basic concept of employing algorithms to analyze and learn
from the data to produce forecasting or classification systems. These techniques can
be learned from previous experience or a given historical database. These methods
can generalize the learning examples provided in the training phase to identify the
main tasks that must be performed.

Several ML algorithms have been developed. These techniques can be classified
according to their learning mechanisms (i.e. supervised, unsupervised, and semi-
supervised learning). Choosing a suitable ML model and training method depends on
the problems to be solved or the available data and its types. The current study
focused on using supervised ML techniques for flooding susceptibility assessment.
According to previous research, various ML techniques have been proposed recently
to deal with flooding susceptibility assessment (i.e. SVMs, ELMs, ANNs, Gaussian
process regression (GPR), and classification and regression trees (CART)). In add-
ition, few studies have addressed flooding susceptibility using ensemble-learning
approaches based on decision trees. These algorithms are based on boosting techni-
ques concentrating on misclassified data during the training phase. In this respect,
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this study aims to assess the performance of two new modeling techniques, CatBoost
and LightGBM, benchmarked against the conventional RF approach.

3.3.1. Random forest
RF models have proven efficiency when dealing with prediction and classification
problems (Esfandiari et al. 2020; Schoppa et al. 2020). RF is an ensemble learning
approach based on a decision tree model. It was developed by Breiman (2001), who
combined bagging (Breiman 2001) and random subspace (Ho 1998) techniques. This
ML algorithm has proven reliable in many fields (Zahedi et al. 2018; Izquierdo-
Verdiguier and Zurita-Milla 2020; Pourghasemi et al. 2020). This study aimed to pre-
dict flood or non-flood regions according to several conditioning factors; therefore,
the RF model was used as a classifier method.

The weakness of decision trees is their sensitivity to training data, which may
result in very different tree structures. In the RF method, the original training set is
used to randomly generate several training sets, thereby allowing the creation of dif-
ferent trees (bagging method). The inputs of the decision trees have the same amount
of data as the initial training, and because the data are randomly generated, the sam-
ples may be repeated two or more. In addition, each tree in the RF is trained with a
subset of features that allows the development of diversified trees that are not corre-
lated. The final result (classification) was obtained using a majority voting method on
each decision tree result (Pal 2005).

Decision tree models are simple to use and easy to interpret; however, their per-
formance is not always better than other classification methods (Malekipirbazari and
Aksakalli 2015). On the other hand, RF outperformed other ML algorithms, such as
ANNs (Bachmair et al. 2017).

3.3.2. Light gradient boosting machine
Microsoft created the gradient boosting decision tree (GBDT) variation called
LightGBM. (Ke et al. 2017). It uses a combination of weak learners to generate a
robust model. The new variant includes algorithms such as histograms, leaf tree
growth, gradient-based one-side sampling (GOSS), and exclusive feature bun-
dling (EFB)).

In GBDT models, the presorted algorithm is commonly used for split operations.
All possible split points are tested based on the information gained, which is time-
consuming to determine the optimal split. A new histogram algorithm was adopted
in the LightGBM method. To reduce the time and complexity of the operation, the
data are grouped into a histogram, and the split point is chosen based on it
(Figure 5).

In LightGBM, the decision tree growth strategy was changed by replacing the
level-wise approach with the leaf-wise tree growth approach. When finding the best
node to split, the former approach of the GBDT splits one level down, forming sym-
metric trees (Figure 6). In LightGBM, only the leaves that reduced the maximum
error were split (Figure 6). Ge et al. (2019) recommended defining a maximum leaf-
wise depth to avoid deep growth of trees and prevent overfitting of the model.
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Figure 5. Split operation example based on histogram algorithm.

Figure 6. Level-wise and leafwise tree growth strategies.
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The LightGBM model also uses two algorithms (GOSS and EFB), making it faster
than GBDT models while maintaining a high performance (Saber et al. 2021).

3.3.3. Categorical boosting
The CatBoost model is another enhanced boosting decision-tree learning technique
proposed by (Dorogush et al. 2018). It employs a gradient-boosting scheme to con-
struct a regression model through adjusted estimation. Furthermore, various refine-
ments were performed to minimize the overfitting of the model. The gradient
boosting model is a useful ML tool that has yielded accurate results in many disci-
plines, including environmental parameter estimation, geospatial ecosystem factor dis-
persion, and meteorological forecasting. The CatBoost model operates well in terms
of categorical attributes. Typically, the absence of definite characteristics increases the
accuracy of the model. It is primarily dependent on the use of gradient boosting,
which employs a binary-tree classification scheme. The following points outline the
differences between CatBoost and the other boosting techniques.

� A sophisticated method was incorporated to convert category characteristics
into numerical information. As mentioned by (Prokhorenkova et al. 2018), tar-
get statistics are very effective for dealing with categorical attributes with min-
imal information errors.

� CatBoost combines categorical variables to take advantage of the existing rela-
tionship between different parameters.

� To reduce the overfitting problem and improve the classification performance,
a symmetrical tree strategy is used.

Let us suppose we have a dataset:

D ¼ XJ , YJð Þ� �
J ¼ 1, ::::,m (4)

where XJ ¼ ðx1j , x2j , :::, x
n
j Þ is a combination of attributes, and YJ 2 R, denotes the

desired target. Input-output datasets are dispersed identically and independently
depending on an unknown function q �, �ð Þ: The target of the learning techniques is to
train and examine a function H : Rn ! R that can decrease information loss, that is,
LðHÞ :¼ ELðy,HðXÞÞ, where L is the smoothness error function and (X, y) denotes
the testing samples from D. The gradient boosting approach builds a greedy series of
approximations Ht:RmR, t¼ 0,1,2… , Ht¼H((t� 1))þ gt is the final function pro-
duced from prior approximation using an additive process Ht¼H((t� 1))þ gt.

gt ¼ arg ming2GL Ht�1 þ g
� � ¼ arg ming2GE L y, Ht�1 Xð Þ� �

(5)

In general, greedy techniques, such as Newton’s method, employing a second-order
approach of L(H(t� 1)þ g) at H(t� 1) or adopting (negative) gradient stages, are
used to address the optimization issue.
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3.4. Rainfall-runoff inundation model (RRI)

Japan’s International Center for Water Hazard and Risk Management has developed
the RRI model. It is a 2D distributed hydrological model capable of simultaneously
simulating flow discharge and flood inundation (Sayama et al. 2012). The model has
been applied in many previous studies worldwide (Perera et al. 2017; Abdel-Fattah
et al. 2018; Tam et al. 2019; Saber et al. 2020; Try et al. 2020). In this study, the
model was calibrated and validated based on the typhoon of 2020, showing acceptable
results with the actual flood discharge and good agreement with flood inundation
maps. The final flooding inundation map developed was used for comparison with
the ML FSMs for the flood extent mapping.

3.5. Evaluation of the model’s performance validation

The receiver operating characteristic (ROC) curve measure is a commonly used and
validated strategy for assessing the reliability of a model in geospatial research
(Tehrany et al. 2013; Chen et al. 2020). The most popular method for evaluating
flood vulnerability and landslide approaches is the ROC curve. The classification per-
formance of a given technique was evaluated using the AUC in several studies (Bui
et al. 2012; Youssef et al. 2016; Youssef and Hegab 2019). A high classification effi-
ciency for a given classification model should have an AUC-ROC value of 0.– 1, and
the model’s performance is enhanced by boosting the AUC-ROC scores. When the
AUC-ROC value was close to 1.0, the models offered the best rate of precision and
consistency. This demonstrates the model’s ability to forecast disasters without bias
(Bui et al. 2012). In this study, the ROC score was determined using the following
formula (Chang et al. 2018):

Other quantitative metrics (accuracy, recall, precision, and F1-score) were
employed to check the model performance and compare its classification ability with
its counterpart models in the literature. Accuracy is the ratio of correctly classified
data to total observations [Eq. (6)]; precision can be defined by the ratio of properly
positive classified data to total positive data [Eq. (7)]. Recall, is known as sensitivity
and is defined by the ratio of positive to the total observations [Eq. (8)]. F1-score
uses weighted averaging for both the precision and recall [Eq. (9)].

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(6)

Precision ¼ TP
TP þ FP

(7)

Recall ¼ TP
TP þ FN

(8)

F1 score ¼ 2 ðRecall � PrecisionÞ
Recall � Precision

(9)
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where true positive (TP) represents a properly categorized flooded pixel, true negative
(TN) represents a correctly categorized non-flood pixel, false positive (FP) indicates
the number of pixels miscategorized as flood pixels, and false negative (FN) refers to
the number of pixels miscategorized as non-flood pixels.

4. Results and discussion

4.1. Multicollinearity assessment and feature selection

According to Chen et al. (2020), a value greater than 0.7 indicates a strong correl-
ation between variables. This value was adopted in this study to detect the existence
of a correlation between the flood-influencing factors. Ten conditioning factors
(DEM, NDVI, flow accumulation, vertical distance from the river, and slope) were
identified as correlated (Table 1). The VIF of the vertical distance from the river (¼
12), DEM (¼ 10.5), SPI (¼ 7.7), and flow accumulation (¼ 7.4) factors were more
significant than the threshold value (> 5), which indicates a problem of multicolli-
nearity (Figure 7a).

To formulate an opinion on the importance of influencing factors concerning
flood generation, the IGR scores were computed and illustrated in Figure 7b.
According to the results; most factors had an IGR greater than 0.05. Only four had
an inferior IGR, that is, flow accumulation, flow direction, rainfall, and aspect.

The selection of conditioning factors was performed as follows:

1. Based on multicollinearity analysis, the vertical distance from the river, DEM,
SPI, and flow accumulation factors were removed from the selection list.

2. Using the IGR as a selection criterion, flow direction, rainfall, and aspect were
removed because their IGR was almost equal to zero.

3. After removing the abovementioned factors, only the slope and the topo-
graphic wetness index (TWI) remained correlated. By comparing the IGR
(Figure 7), we find that the slope factor is more critical than the TWI concern-
ing flood generation. Therefore, the slope factor was selected for flood predic-
tion based on the normalized difference vegetation index (NDVI), land use,
curvature, geology, hillshade, and horizontal distance from the river.

Table 1. Spearman’s correlation coefficients for flooding susceptibility mapping.
Aspect Rainfall Curvature DEM NDVI Flow acc. Flow dir. H. Dist. V. Dist. Geology Hillshade Land use Slope SPI TWI

Aspect 1.00
Rainfall �0.03 1.00
Curvature 0.08 0.01 1.00
DEM 0.03 0.20 0.27 1.00
NDVI 0.04 �0.03 0.20 0.72 1.00
Flow acc. �0.07 0.01 �0.48 0.05 0.06 1.00
Flow dir. 0.06 �0.07 0.11 0.06 0.06 �0.11 1.00
H. Dist. �0.04 0.03 0.02 0.49 0.39 0.08 0.02 1.00
V. Dist. 0.04 0.17 0.28 0.97 0.72 0.00 0.06 0.52 1.00
Geology 0.00 0.29 �0.02 0.08 �0.02 �0.01 �0.03 �0.09 0.06 1.00
Hillshade 0.38 �0.05 0.08 0.03 0.02 �0.05 0.51 �0.06 �0.03 �0.06 1.00
Land use �0.03 �0.10 �0.11 0.59 �0.53 �0.13 �0.05 �0.25 �0.58 �0.07 0.00 1.00
Slope 0.10 0.07 0.28 0.85 0.69 0.03 0.08 0.38 0.86 0.06 0.01 �0.53 1.00
SPI 0.04 0.03 �0.41 0.32 0.27 0.86 �0.06 0.21 0.30 �0.01 �0.05 �0.27 0.38 1.00
TWI �0.10 �0.07 �0.49 0.76 �0.61 0.35 �0.12 �0.31 �0.79 �0.07 �0.04 0.45 �0.90 0.00 1.00
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4.2. Evaluation of the models

This section offers a thorough analysis and comparison of all models created for this
research concerning several categorization criteria. K-fold cross-validation was used
throughout the learning phase. A learning set (60%) was created from the reviewed
data, and the remaining data were used to gauge accuracy. The learning datasets were
divided into two groups: validation data, which was used for hyperparameter tuning,
and training data (80%), which was used to modify and reduce classification mistakes
and model weights. The relevant hyperparameters for each classification method were
selected using the grid search method. A broad range of hyperparameter values was
evaluated during the process. The best designs for each classifier are listed in Table 2.

The accuracy rates of all the studied models are listed in Table 3. As can be seen,
all developed classification techniques achieved approximately identical results in
terms of statistical metrics. The LightGBM model slightly outperformed the others
regarding speed convergence and classification metrics. The ROC curve of the gener-
ated models on the test ensembles is displayed in Figure 8, which reveals that the
three suggested boosting strategies have similar qualities and provide significant
accuracy. The maximum AUC was reached by LightGBM and RF models with the
same score (99.5%), and CatBoost was ranked as the worst model with an AUC
of 97.9%.

Figure 7. Analysis of influencing factors: (a) VIF and (b) IGR for flood susceptibility.

Table 2. Parameter values of random forest, CatBoost, and LightGBM models.
Method Hyperparameter Grid search values Selected value

RF Max depth [2:2:40] 22
Number of trees [100:100:2000] 800

LightGBM Learning rate [0.01:0.01:0.1] 0.09
Max depth [2:2:40] 32

Number of leaves [20:20:300] 220
Min data [5:5:100] 25

CatBoost Learning rate [0.01:0.01:0.1] 0.07
Max depth [2:2:40] 6

Leaf estimation iterations [1:1:10] 8
l2 leaf reg Log [10 (�21),10 (�8)] Log (10 (�18))
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Furthermore, CatBoost scored the first rank in terms of accuracy, with perform-
ance accuracy equal to 97.8% and precision equal to 96%, accompanied by the
LightGBM classifier with an accuracy of 97.3% and precision of 95%. Finally, the RF
model was ranked as the last classifier model with an accuracy equal to 95.5% and a
precision of 96.2%. In comparison with previous studies, RF in this study outper-
formed many of the previous applications, including (e.g. AUC ¼ 0.925, Chen et al.
(2020); AUC ¼ 0.886, Tang et al. (2020); AUC ¼ 0.7878, Lee et al. (2017); AUC ¼
0.972, Achour and Pourghasemi et al. (2020)).

The confusion matrix in Figure 9. shows the performance of the used models in
the study area, where CatBoost shows better prediction followed by LightGBM and,
finally, the RF methods; however, all of them display an acceptable prediction.

This study examined two novel boosting classification models for flooding suscep-
tibility assessment in the VGTB River Basin. From the evaluation statistics, we can
conclude that the LightGBM and CatBoost models proved their performance for
flooding susceptibility and can be used as essential tools for real-time application
compared to their counterpart models because of their high performance and speed
convergence.

This work examined two novel boosting classification approaches for predicting
flood vulnerability in the VGTB. This is the first work investigating CatBoost and
LightGBM for flood classification in humid environments against the frequently used

Table 3. Statistical parameters used for the model performance evaluation.

Criteria

Random Forest LightGBM CatBoost

Train Test Train Test Train Test

Accuracy 0.999 0.955 0.999 0.973 0.999 0.978
Precision 0.998 0.962 0.998 0.950 0.998 0.960
Recall 1.000 0.932 1.000 0.990 1.000 0.990
F1_score 0.999 0.947 0.999 0.969 0.999 0.974
AUC 1.000 0.995 1.000 0.995 0.999 0.979

Figure 8. Performance of random forest, CatBoost, and LightGBM models based on AUC-ROC
curves.
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RF models. The results revealed that LightGBM outperformed its counterpart ML
models, especially regarding processing time and classification metrics. This agrees
with the findings of Saber et al. (2021) that LightGBM has proven its efficiency in
flash flood prediction and outperforms the other two methods in classification and
processing time. In addition, it was stated that LightGBM outperformed other meth-
ods, such as the RF, M5Tree, and empirical models for estimating daily evapotrans-
piration in China as a humid subtropical area (Fan et al. 2019).

Similarly, it was also found that LightGBM performed better than the others in
terms of AUC (99.5%). The accuracy of CatBoost (97.9%) was also high compared to
the previous studies in other fields. Among other methods, CatBoost, SVM, and RF
have been applied to evapotranspiration modeling in China (Huang et al. 2019). They
stated that CatBoost presented higher accuracy and lowered computational cost than
the other approaches (RF and SVM).

Figure 9. Confusion matrix showing the performance of the used models in VGTB River Basin.
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4.3. Flood susceptibility modeling

The newly applied boosting techniques (CatBoost and LightGBM) and RF demon-
strated their high performance in predicting flooding in a humid climate environ-
ment. The flood susceptibility maps for the whole VGTB river basin were thus
estimated using these approaches. Then, the three FSMs developed using the three
models were compared with the flood inundation map of the RRI model regarding
the flood extent, as shown in Figure 10. The flooding susceptibility values were then
mapped under five levels of susceptibility classes: no flood, low, moderate, high, and
very high.

The FSMs by the employed models showed that the areas of high and very high
levels of susceptibility to flooding to be 13% (RF), 11% (LightGBM), and 10%
(CatBoost) of the total area, which agrees with the flood inundation map developed
by RRIat approximately 11%. This level of susceptibility is predominant in the coastal
and plain areas along the Vu Gia and Thu Bon Rivers (Figures 10 and 11). The spa-
tial distributions of the high and very high levels were similar in all the maps pro-
duced by the ML and RRI models. The areas affected by a moderate level of
susceptibility to flooding (Figure 11) were estimated at 10% (RF), 0% (LightGBM),
and 1% (CatBoost), indicating that both LightGBM and CatBoost are more similar to
the RRI model which shows a value of approximately 1%. The areas affected by the
low level of susceptibility to flooding (Figure 11) were estimated at 36% (RF), 1%
(LightGBM), and 2% (CatBoost), which also revealed that both LightGBM and
CatBoost performed better, with good agreement with the RRI model showing the
value of approximately 3%. It was also found that the areas that were not subjected
to the flooding were approximately 42% (RF), 83% (LightGBM), and 87% (CatBoost)
of the total study area (Figure 11), showing good agreement with RRI model that
shows approximately 90%. However, the performances of the employed models are
almost the same. The two new methods of LightGBM and CatBoost outperform RF
in terms of the spatial coverage of the flood susceptibility levels compared with the
RRI model. The RF overestimated the low flood susceptibility in the study area. The
spatial distribution of FSM is consistent across utilized ML models, emphasizing that
most of the residential and agricultural sectors are concentrated in coastal regions
prone to flooding.

4.4. Testing different sizes of the datasets

In this section, we tested different sizes of the datasets, including flooded and non-
flooded points (1250, 1000, 800, 600, 400, 90, 60, and 30) of the training model
(Figure 12). The training datasets were classified as 50% and 50% for flooded and
non-flooded points, respectively; however, the testing datasets were the same during
the simulation (Figure 12). We found that accuracy scores for all the models and all
the tested cases were greater than 90% (Figure 13), except for dataset sizes of 60 and
30 points in LightGBM. The accuracy score slightly decreases with the decrease in the
datasets in both the LightGBM and CatBoost models but is inconsistent in the RF
model. This implies that the ML approaches employed in this study can effectively
work with very limited training datasets with a slight decrease in accuracy, which will
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Figure 10. Flood susceptibility maps by LightGBM (a), CatBoost (b), RF (c), and RRI (d), respectively,
from top to bottom.
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be applicable for ungauged regions with deficient monitoring and observations of
flooding occurrences and impacts. The FSMs developed based on different training
datasets show that most spatial maps are acceptable as overall spatial coverage; how-
ever, there are some small spatial differences in the susceptibility flooding levels
(Figures 14 and 15). For instance, all datasets (1250, 1000, 800, 600, 400, 90, 60, and
30) except for the dataset of 200 had almost the same percentage of impacted regions
(Figures 14 and 15) in the category of extremely high flood susceptibility. On the
other hand, the affected areas by the high flood susceptibility level also vary. Still,
the highest percentage was 9% for the 200 and 60 datasets, and the lowest was 6% for
the 30, 90, 600, and 800 datasets. The variation in moderate flood occurrence ranged
from 17% to 9%. The dataset size of 30 was the highest among the others, about 17%.
The range of the low flood susceptibility category was highly variable, from 20% to 41%,
the lowest was for the dataset of 30, and the highest was for the dataset of 800. The rea-
sons for such variation are probably the random selection of the flooded samples, which
in some cases are not representative of all the influencing factors. We noticed that the
spatial coverage was not extremely different, but some differences were observed based

Figure 11. Affected area of the flood susceptibility levels for the three applied ML methods and
flood inundation map of RRI model.
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on the categories. The areas with no flood levels are also changeable by about 42%, 42%,
38%, 45%, 44%, 45%, 42%, 44%, and 51% for the datasets of 1250, 1000, 800, 600, 400,
200, 90, 60, and 30, respectively. Interestingly, the highest percentage was recorded by
the dataset of 30 points and the lowest by dataset 800. The analysis of different data sizes
for ML training show that ML can effectively predict the flood susceptibility maps in the
study area regardless of the number of samples, with the condition of the used data
being observational flooded sites.

4.5. Discussion and comparison with results of the RRI model

The flood risk assessment scientific community is endeavoring to develop much more
logical and mathematical methods for FSM forecasting at different catchment scales

Figure 12. Datasets used in the training and testing of the ML models.
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Figure 13. Accuracy of the models based on different training datasets.
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Figure 14. Impact of data size on flood susceptibility map.
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(Arora et al. 2021). Some previous studies on flood susceptibility mapping use ML
approaches and deep learning in the study area. Testing many models is therefore
strongly advised, especially in areas with little data and complex hydrological models.
This study applies three ML methods: LightGBM, CatBoost, and RF. The LightGBM
and CatBoost techniques were put to the test for the first time for mapping flood sus-
ceptibility in this humid area with a high frequency of typhoon occurrences.
Compared to the commonly used RF approach, the findings of the flooding suscepti-
bility maps show that the two methods can forecast flood-prone regions with respect-
able accuracy. AUC ¼ 78% (Band et al. 2020), 99.3% (Li et al. 2019), 94.5%
(Talukdar et al. 2020), 93.8% (Park and Lee 2020), and 89.4% (Talukdar et al. 2020)
use RFs in several additional related research with varying degrees of accuracy
(Nguyen et al. 2018). Compared to most earlier research, the AUC ¼ 99% for RF in
this study was greater.

Additionally, the newly applied methods of LightGBM and CatBoost showed
almost the same accuracy of 99% and 98%, respectively, revealing better performance
than most previous studies. These three methods have been tested in Hurghada,
Egypt (Saber et al. 2021), stating that LightGBM has the advantage of better classifica-
tion metrics and fast processing time and outperforms other methodologies such as
CatBoost and RF. In addition, their results showed that LightGBM and CatBoost had
proven their efficiency in flash flood prediction in arid regions (Saber et al. 2021).

The three techniques also outperformed the 90% average performance of previ-
ously used methods for mapping flood susceptibility, which was based on an average
of about 140 prior applications from more than 30 papers that have been analyzed.
Based on AUC, the effectiveness of the prior techniques used for FSM ranges from
64 percent (Shafizadeh-Moghadam et al. 2018) to 99.3% (Li et al. 2019). CatBoost
was also applied in Germany, with better performance than other methods, showing
good accuracy with an AUC of 0.816 (Kaiser (2021)).

The maps of flood susceptibility developed using ML techniques (Figure 10)
showed an acceptable fit with the generated flood inundation map by the RRI model,
showing that the ML approaches are promising for flood prediction and can be used
without detailed observations and challenges of model calibrations as alternative tools
for hydrological models. The results of LightGBM and CatBoost are more comparable
to the flood inundation map developed by the physical RRI model, indicating that

Figure 15. Percentage of the affected areas under different flood susceptibility classes using differ-
ent dataset sizes (RF method).
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they are more acceptable than RF, which overestimates the low flood susceptibility
level in the study area.

The flood susceptibility maps developed using these models showed that high and
very high levels of susceptibility to flooding covered 13% (RF), 11% (LightGBM), and
10% (CatBoost) of the total area, respectively. These levels of susceptibility were mainly
concentrated in the coastal and plain areas along the Vu Gia and Thu Bon Rivers. The
moderate level of susceptibility to flooding covered 10% (RF), 0% (LightGBM), and 1%
(CatBoost) of the total area, while the low level of susceptibility covered 36% (RF), 1%
(LightGBM), and 2% (CatBoost). The areas not susceptible to flooding were 42% (RF),
83% (LightGBM), and 87% (CatBoost) of the total area. The spatial distribution of
FSMs is consistent across utilized ML models, emphasizing that most of the residential
and agricultural sectors are concentrated in coastal regions prone to flooding. The two
new methods, LightGBM and CatBoost, outperform RF in terms of the spatial coverage
of the flood susceptibility levels compared to the RRI model.

Furthermore, we tested different datasets for training the three ML models, concluding
that datasets with more than 90 points can be sufficiently accurate for reasonable predic-
tion of the FSM. LightGBM and CatBoost showed a slightly declining trend in the accuracy
of the results based on the dataset sizes; however, RF did not show such a trend. These
results are precious for applying ML to ungauged basins with limited datasets.

5. Conclusions

Flooding resulting from typhoons is one of the most threatening disasters in Asian
countries and worldwide. Therefore, the present study introduced three ML methods
to accurately predict flooding susceptibility in humid Vietnamese areas. The first
method is RF, which is well known and widely applicable in many applications,
including FSM, and the other methods of LightGBM and CatBoost were examined
for the first time for FSM in this humid region. On the basis of a flood inventory
map and ten flood-influencing factors, the models were trained and validated. Owing
to the availability of high-quality observations, we also tested different datasets for
the training (i.e. 30, 60, 90, 200, 400, 600, 800, 1000, and 1250 data points) to deter-
mine the minor data points that provided acceptable reliability, as well as to under-
stand the differences in the spatial FSMs in the study area.

Interestingly, we found that the accuracy of results based on all the tested datasets
was higher than 90%, indicating that a limited number of observations can be used effi-
ciently in model accuracy. However, the final FSMs differed spatially from one suscepti-
bility level to the others. This finding is significant to demonstrate that ML methods can
work efficiently with an acceptable level of accuracy within a small number of actual
training datasets. The conclusions of this study can be summarized as follows:

� We applied three ML models—RF, LightGBM, and CatBoost—to predict flood
susceptibility in humid areas that experienced successive extreme typhoons.

� The LightGBM and CatBoost models were tested for the first time in this spe-
cific climatic region and showed high performance compared to the RF
method.
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� The results of the ML methods showed good agreement with the rainfall-runoff
model for flood inundation mapping, especially the LightGBM and CatBoost
models, in terms of coverage areas of the flood susceptibility levels.

� Different training datasets were examined to determine ML’s lowest acceptable
number of observations for flooding susceptibility.

� The FSMs demonstrated that downstream areas with high residential and agri-
cultural activity are highly susceptible to flooding.

� These results might be utilized as a guide and reference for flood risk reduc-
tion and management in this region, assisting managers, decision-makers,
and planners in successfully managing and reducing floods in high-risk flood
zones.

The study’s conclusion highlights the effectiveness of the ensemble learning
approach in accurately predicting flood susceptibility, with a high level of agreement
with hydrological models in flood mapping. The results of this study demonstrate the
potential of ensemble learning algorithms, such as CatBoost, LightGBM, and RF, to
provide valuable insights into the assessment of flood risk and support the develop-
ment of effective flood management strategies. However, it is important to note that
while these models provide a powerful tool for flood prediction, they are not without
limitations. One of the main limitations of this study, as the majority of the studies
utilized machine learning (ML) models, is that the presented susceptibility map has
not considered return periods in spatial modeling of the flood because the selection
of training and validation points has not been based on the return periods due to
lack of hazard maps for each return period. Further research is needed to address
these limitations and improve the accuracy and reliability of these models in others
regions of the world.

In light of the findings, an ongoing extension of this research aims to utilize the
power of machine learning algorithms, combined with physically-based hydrological
models, to predict flood depth. This effort seeks to develop a more comprehensive
and accurate understanding of flood risk and provide decision-makers with valuable
information to support evidence-based decision-making for flood mitigation and
adaptation. Overall, the study provides promising results for the application of
machine learning in flood susceptibility mapping and the prediction of flood depth,
and it opens the door for future research in this field.
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