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Abstract:

Predicting flash flood-prone areas is essential for proac‐
tive disaster management. However, such predictions are
challenging to obtain accurately with physical hydrological
models owing to the scarcity of flood observation stations
and the lack of monitoring systems. This study aims to
compare machine learning (ML) models (Random Forest,
Light, and CatBoost) and the Personal Computer Storm
Water Management Model (PCSWMM) hydrological
model to predict flash flood susceptibility maps (FFSMs) in
an arid region (Wadi Qows in Saudi Arabia). Nine indepen‐
dent factors that influence FFSMs in the study area were
assessed. Approximately 300 flash flood sites were identi‐
fied through a post-flood survey after the extreme flash
floods of 2009 in Jeddah city. The dataset was randomly
split into 70 percent for training and 30 percent for testing.
The results show that the area under the receiver operating
curve (ROC) values were above 95% for all tested models,
indicating evident accuracy. The FFSMs developed by the
ML methods show acceptable agreement with the flood
inundation map created using the PCSWMM in terms of
flood extension. Planners and officials can use the out‐
comes of this study to improve the mitigation measures for
flood-prone regions in Saudi Arabia.
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INTRODUCTION

In the last two decades, there has been an extensive eval‐
uation of machine learning strategies worldwide for fore‐
casting flood risk. As a result, flood modeling has advanced
greatly due to recent innovations in machine learning tech‐
niques. Information may be captured without establishing
assumptions, and complicated datasets can be processed
quickly and accurately using these approaches (Arabameri
et al., 2020). Machine learning techniques are widely appli‐
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cable in water-related applications (e.g. Random forest,
LightGBM and CatBoost), and can accurately predict flash
flood susceptibility in arid regions with high performance
(Saber et al., 2021). Due to extremely short lag durations,
flash floods are more disastrous than any other form of
floods (Vinet, 2008), particularly in dry regions (Abdel-
Fattah et al., 2018; Abdrabo et al., 2020; Saber et al.,
2020). Flash floods have been recorded and verified to have
severe impacts in developing and developed nations (Bisht
et al., 2018; Esmaiel et al., 2022); nevertheless, flood
occurrences are more severe in developing nations, such as
those in the Middle East and North Africa (MENA). Flash
floods are becoming more common as a result of changes
in violent storm patterns and global climate change
(Hirabayashi et al., 2013; IPCC, 2014). Flash flood suscep‐
tibility mapping is one of the most critical metrics accord‐
ing to researchers and governments throughout the globe
(Ali et al., 2020). In Saudi Arabia, climate change has a
substantial impact on flash flood variability, and flash
floods have increased over the last two decades. For
instance, flash floods occurred in Jeddah city in 2009 and
2011. The number of “Jeddah drowning” victims reached
113 in 2009 (Youssef et al., 2016). The flood susceptibility
map can provide a better understanding of which areas are
most at risk for future flooding (Band et al., 2020;
Chowdhuri et al., 2020; Saha et al., 2021; Malik et al.,
2021), and such flood susceptibility mapping can be a good
guide for the decision maker for future effective flash flood
management strategies.

In Saudi Arabia, there are limited previous studies
focused on ML approaches for flood susceptibility (Al-
Areeq et al., 2022; Youssef et al., 2022a; 2022b), and to
our knowledge, there is no study comparing physically
based approaches and ML algorithms. Therefore, the aim of
this study is to develop flash flood susceptibility maps
(FFSMs) by adopting machine learning (ML) models (ran‐
dom forest, LightGBM, and CatBoost) and hydrological
modeling analyses (Personal Computer Storm Water
Management Model; PCSWMM). Wadi Qows in Saudi
Arabia was selected as a case study (Figure 1a). The main
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framework of this paper consists of an introduction, study
area, methodology (datasets and features, ML algorithms,
and model accuracy), results, and finally a conclusion.
Study area

Saudi Arabia (Figure 1a) is located in southwestern Asia
between 32° and 55° east longitude and between 15.5° and
32.5° north latitude; the country is divided into 13 adminis‐
trative regions. Saudi Arabia has a desert climate with very
low average annual rainfall, except in the southwestern
region, which receives an average of approximately

Figure 1. (a) The Wadi Qows study area in Jeddah
Governorate, Saudi Arabia, (b) flooded and non-flooded
locations, and (c) the flood inventory map used to construct
the training and testing datasets

300 mm of precipitation annually. This region receives the
highest precipitation amount in the country, while precipita‐
tion decreases significantly in the rest of the regions. Wadi
Qows is situated in eastern Jeddah city between 39.1° E
and 39.6° E and between 21.2° N and 21.8° N.

DATA AND METHODS

The FFSMs in both approaches of ML and the physical
model have been estimated. First, in preparing the flood
and non-flood inventory map, about 300 points were
selected based on the post-flood survey of the most extreme
event of 2009 that hit the region with very destructive
impacts. Secondly, the effective influencing factors were
prepared and developed. To select the effective contributors
for flood susceptibility, the selection features methods were
applied. To develop the flood susceptibility mapping, ML
algorithms, namely, the random forest (RF), LightGBM,
and CatBoost algorithms (Saber et al., 2021), were
employed. Also, the accuracy of their performance was
assessed based on several statistical measures, in addition
to comparing with the physical-based model in terms of
flood extent.
Datasets and influencing factors

First, a flood inventory map (Figures 1b and 1c) is gener‐
ated based on 300 inundated sites. These places were deter‐
mined based mostly on post-flood studies undertaken after
the flash floods on November 25, 2009 that hit Jeddah,
Saudi Arabia. Non-flooded locations (300) across the
watershed were randomly picked using GIS tools from the
topographic information such as DEM based on our experi‐
ence. In this research, in order to use machine learning for
flood susceptibility mapping, observational flooded and
non-flooded points were collected from the post flood sur‐
vey of the flood event of 2009, with datasets divided into
70% for training and 30% for testing. Then, after model
training and validation, we applied the model over the
whole basin to predict the flooded and non-flood regions
and finally we could create a spatial map for the whole
region for the flood susceptibility. Eleven flood-controlling
factors such as elevation, aspect, slope, hillshade, flow
accumulation, horizontal flow distance, vertical flow dis‐
tance, stream power index (SPI), rainfall, land use/land
cover, and topographic wetness index (TWI) were devel‐
oped by using ArcGIS spatial tools with the same resolu‐
tions of 10 m (Figure 2). These factors were selected based
on the previous studies as the most dominant and effective
influencing factors for flooding occurrences. Additionally,
we performed feature selection to identify the factors that
contribute most significantly to flood susceptibility in the
study area.
Machine learning

ML algorithms, namely, the RF, LightGBM, and
CatBoost algorithms, were employed. The accuracy of the
final results of the ML models was assessed by considering
different statistical measures, including the most dominant
factor, the area under the curve (AUC). The final flood sus‐
ceptibility maps developed by the ML models were com‐
pared with the flood inundation maps obtained from the
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physical hydrological model. In this study, we used three
ML Algorithms: 1) CatBoost: An algorithm proposed by
Dorogush et al. (2018), which uses gradient boosting for
regression trees and builds a model in a gradient manner
through increasingly precise approximations. 2)
LightGBM: A variant of the gradient boosting decision tree
(GBDT) algorithm developed by Microsoft (Ke et al.,
2017). The structure of this algorithm is based on weak
learners being combined to form a strong learner. 3) RF: A
ML algorithm that belongs to the category of ensemble
learning methods. The algorithm of RF was introduced by
Breiman (2001) based on binary decision trees as a combi‐
nation of the random subspace method and bagging ensem‐
ble learning. More details can be found in Saber et al.
(2021).
Multicollinearity assessment and feature selection

Spearman’s coefficient correlations between two features
were calculated, and multicollinearity was tested among all

influencing factors studied here. This research used the
variance inflation factor (VIF) methods to conduct a multi‐
collinearity analysis, which measures the behavior of vari‐
ance against the correlation with other independent vari‐
ables and provides a measure of how much a variable is
contributing to the standard error in the regression. The
purpose of which was to identify pre-existing relationships
between variables. Research of a community’s susceptibil‐
ity to flooding frequently includes this factor (Bui et al.,
2019), and a threshold >5 denotes multicollinearity. How‐
ever, in other research, the relevant predictors are deemed
collinear if the VIF value is more than ten and are therefore
advised to be left out of the models (Dou et al., 2019). This
value was adopted in this study to detect the existence of
correlations between the flood-influencing factors identi‐
fied as being mutually correlated (Table SI). The influenc‐
ing features show information gain ratio (IGR) scores
greater than zero, which indicates their relative importance
in flood prediction. The IGR was computed and is illus‐

Figure 2. Flood-influencing factors: (a) rainfall, (b) flow accumulation, (c) flow distance, (d) land use/land cover, e) flow
distance, (f) slope, (g) hillshading, (h) stream power index (SPI), (i) topographic wetness index (TWI), (j) aspect, and (k)
elevation
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trated in (Figure 3a). The influencing features show IGR
scores greater than zero, which indicates their relative
importance in flood prediction. Also, the VIF values for the
average rainfall (= 6.90) and LCLU (= 6.26) factors were
greater than the threshold value (> 5), indicating a multi‐
collinearity problem (Figure 3b). Based on these feature
selections, from among 11 factors, only nine features were
selected as shown in Table SI.
Evaluation of the models

The receiver operating characteristic (ROC) curve mea‐
sure is a commonly used and validated strategy for assess‐
ing the reliability of a model in geospatial research. There‐
fore, the AUC-ROC parameter and other quantitative
metrics (accuracy, recall, precision, and the F1-score) were
employed to check the model performance and compare its
classification ability with the abilities of other models.
Table SII shows the details of statistical measures of model
performance. All category techniques resulted in roughly
the same outcomes in terms of statistical indicators.
According to the AUC-ROC results, the random forest
algorithm outperformed the other models (Figure 4). Still,
the other two models (CatBoost and LightGBM) showed
higher accuracy and precision values than the RF (Table
SII).

Figure 3. Analyses of influencing factors: (a) information
gain ratio (IGR) and (b) variance inflation factor (VIF)
flood susceptibility results: Digital elevation model (DEM),
land cover, vertical distance to rivers (V. Flow Dist.), aver‐
age rainfall, slope, topographic wetness index (TWI), hori‐
zontal distance to rivers (H. Flow Dist.), flow accumulation
(Flow acc.), stream power index (SPI), aspect, hillshade

Personal Computer Storm Water Management Model
(PCSWMM)

PCSWMM is a software tool for the simulation and anal‐
ysis of urban stormwater systems, and it was developed by
Computational Hydraulics International (CHI) (Computa‐
tional Hydraulics International (CHI) 2023). The model
requires input datasets as follows: 1) The DEM was
acquired from the Shuttle Radar Topography Mission
(SRTM) satellite data at a resolution of 30 m. 2) Rainfall
data was generated from the PERSIANN rainfall satellite
data (Center for Hydrometeorology and Remote Sensing
2017). 3) The land use was divided into two types namely
Urban and Desert based on Google Earth data. The catch‐
ment model was run to estimate the event that occurred on
November 25, 2009 in Jeddah city, a devastating flood
event with a total daily rainfall rate exceeding 85 mm
within four hours. The 2D cells were generated based on
the attributes of the bounding polygon. The model was cali‐
brated based on the flood depth data collected from the
post-flood survey of the storm event of 2009.

RESULTS

Machine learning
The assessment system of measurement of the newly

assessed algorithms (CatBoost, LightGBM, and RF) vali‐
dated their high overall performances when predicting
flooding in an arid environment. Accordingly, those tech‐
niques were employed to estimate flood susceptibility maps
for Wadi Qows. Several statistical indices (Accuracy, Preci‐
sion, Recall, F1_score, and AUC) were used to evaluate the
ML algorithms. From the results, the highest AUC was
obtained by the RF model (98.3%). AUC was 97.2% and
95.5% for LightGBM and CatBoost, respectively. How‐
ever, CatBoost displayed the best accuracy and precise
classification performance, with an accuracy = 95.5% and
precision = 93.3%, followed by the LightGBM model, with
an accuracy = 93.8% and precision = 90.3%, and finally the
RF model with an accuracy = 93.2% and precision =
89.4%. In comparison with previous studies (Saber et al.,
2021), the AUC for RF indicated higher accuracy, however,

Figure 4. Performance of the Random Forest, CatBoost,
and LightGBM models based on the areas under the
receiver operating characteristic (ROC) curves
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LightGBM and Catboost had lower accuracy.
PCSWMM

The model has been calibrated based on the observed
data obtained from the field survey in the 2009 event. The
model accuracy based on the comparison with the flood
depth was about 80%. The most influential parameters
were Manning’s roughness coefficients with a range from
0.015–0.04, and soil porosity with a range from 0.05–0.6.
The PCSWMM model analysis revealed that the areas with
high impervious surface coverage were more prone to
flooding and runoff issues, highlighting the importance of
implementing effective stormwater management strategies
in urbanized areas to mitigate the negative impacts of
urbanization on the hydrological cycle.
Flood susceptibility mapping

The three FFSMs developed using the ML models were
compared with the flood inundation map obtained with the
PCSWMM, as shown in Figure 5. The FFSMs developed
by the ML methods show reasonable spatial distributions.
They agree somehow in the flood extent with the actual sit‐
uation in the case of the flood of 2009 in Jeddah city,
revealing that the adopted ML approaches are efficiently
applicable for FFSMs in arid regions. The FFSMs were
classified from low to very high levels of susceptibility.
Most downstream areas dominated by high populations are
affected mainly by high and very high flood levels, as
shown in Figure 5. Figures 5 and 6 indicate that the FFSMs
developed by these three models are comparable with the
PCSWMM results in terms of flood extension. Neverthe‐
less, other flood levels, such as the estimated areas of high
and extremely high flood risk zones, comprise 40% (RF),
43% (CatBoost), and 41% (LightGBM) of the study area.
Generally, the results show acceptable agreement between
the two approaches in the spatial extent of the flooding
area.

The hydrological model used in this study (PCSWMM)
can simulate a flood inundation map (depth and extent).
This depth and extent are based on the input storm which
varies from one event to another. Also, ML can give the
probability of flood occurrence as an extent (flood suscepti‐
bility). Due to the limited observational data, we attempt to
develop a ML model to predict flood susceptibility in the
region. Additionally, we implement a physical model to
explain somehow the efficiency of the ML model by com‐
paring the flood inundation extent with the flood suscepti‐
bility. Therefore, we compare the extent of the flood event
of 2009 with the existing flood susceptibility map that
shows that somehow ML is reliable in this application.
However, the flood inundation map developed by physical
model can be variable if we change the input storm. There‐
fore, currently, we are working on two issues; the first one,
using ML to develop flood depth prediction which allows
us to directly compare with the flood inundation map
developed by the physical model, and the second one, to
develop a hybrid model of both ML and physical models to
accurately predict the flood depth and susceptibility in such
data-scarce regions.

Figure 5. Flood susceptibility maps produced by the
LightGBM (a), Random Forest (b), CatBoost (c), and
PCSWMM (d) analyses
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Figure 6. Affected flood susceptibility areas obtained with
three ML methods and the flood inundation map of the
PCSWMM model
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CONCLUSION

This research demonstrates the feasibility of using ML
algorithms (RF, LightGBM, and CatBoost) for evaluating
FFSMs in dry environments. The FFSMs developed by the
machine learning model show an acceptable consistency
with the FFSM by PCSWMM from the aspect of their spa‐
tial distributions. The area under the ROC is greater than
97%, revealing that the applied approaches can reliably
forecast flood zones. According to the FFSM, the densely
populated coastal region is among the most vulnerable to
floods, placing it in the highest risk category. However, one
of the crucial limitations of this study is the lack of data
which leads to uncertainty in both hydrological and
machine learning models. The availability of high-quality
data is often a challenge, especially in regions with limited
monitoring stations or in areas with a lack of historical
flood records such as Saudi Arabia. Therefore, addressing
the data limitation issue is crucial to improve the accuracy
and reliability of these models and to support effective
decision-making in flood risk management. Such a limita‐
tion can be improved by developing a hybrid approach
combining both physical-based models and machine learn‐
ing algorithms to accurately predict flood risk maps. A log‐
ical extension of this work is to develop such a hybrid
model for flood depth prediction.
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