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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Climate warming is expected to increase 
future drought severity and frequency. 

• Drought severity varies for different 
sub-basins and through time. 

• Rice production can be severely affected 
in some areas of the GRB. 

• Mitigation measures include the use of 
drought-resilient/less water-intensive 
crops.  
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A B S T R A C T   

Extreme dry and hot conditions lead to intense droughts in central India. However, the precise changes in future 
drought characteristics and their consequences on crop production have not been fully examined in Godavari 
River Basin. Therefore, this study focuses on the spatiotemporal modelling of climate change impacts on drought 
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over the past, present, and future periods using long-term high spatial gridded data. The past and present 
observed datasets were obtained from Indian Meteorological Department, whereas the future datasets were 
obtained from d4PDF Scenarios. The standardized precipitation evapotranspiration index (SPEI) was applied to 
analyse drought statistics to identify the worst-case drought scenario (i.e. year most affected by severe-to- 
extreme drought with high drought severity), which was used further to access precise drought risk. Because 
SPEI considers the effect of both rainfall and temperature and therefore it is the widely recommended meteo-
rological drought indices and best suited for climate change impact assessment. Drought severity was analysed 
using a Multi-criteria assessment risk matrix, and the areas under higher agriculture drought risk were mapped. 
The frequency of droughts with higher intensity and magnitude increased in the present decade compared to the 
past three decades. 75% area showed higher vulnerability to drought risks, whereas only 25% showed lower risks 
and less vulnerability to drought occurrences. Results demonstrate that drought severity varies from one sub- 
basin to another. More drought episodes were predicted for the central belt, particularly over the sub-basins 
of Wardha, Wainganga, Pranitha, and part of Indravati and Lower Godavari. 11% of the area covering six dis-
tricts in the GRB was identified as highly vulnerable, and rice production was drastically reduced, accounting for 
41.02% of production loss during the worst-case drought event. The frequency of severe-to-extreme droughts is 
expected to increase under future scenarios; therefore, effective mitigation strategies are recommended to 
minimise the agriculture drought risks and economic loss.   

Practical implications for stakeholders, water resource man-
agers, and policy makers  

Climate change has impacted freshwater resources, putting many 
places around the world at risk for sustainable development (Bates 
et al., 2008). Climate warming will lead to more extreme changes 
in climate systems and increase the associated risk over the GRB in 
India. Droughts are a frequently occurring and widespread natural 
hazard that adversely affects many people and economic sectors, 
among which agriculture is the most affected (Prabnakorn et al., 
2019) because of its high dependency on water resources 
(UNDRR, 2019). It has become a constant visitor and most 
occurring natural disaster in India, affecting badly the agriculture 
and water resource sector, especially most in the central part 
where agriculture is the primary economic activity of >80% of the 
population. Unevenly distributed and unpredicted rainfall made it 
difficult in understanding the extreme situation, and its conse-
quences on agricultural production. It is the most significant 
constraint for crop production in the central part of India. And the 
Godavari River Basin is one of the main primary water sources for 
irrigation and other water use purposes in central India. There-
fore, addressing this issue is crucial to minimise the crop pro-
duction risk and the economy of the farming community in the 
GRB in India. The assessment of rainfall prediction and expected 
impacts under climate change scenarios and their variability is 
critical to addressing the water scarcity and water resource man-
agement problems. And hence, this study aims to produce a useful 
background for impact assessment studies and adaptation plan-
ning for global warming, and to examine the effect of anthropo-
genic warming on the estimated drought frequency, and its 
associated impacts on crops. The results provide a relative statistic 
that indicates the regional ranking of potential impacts, which can 
be used to prioritise actions for drought risk management and 
adaptation plans. The trend analysis of rice production and related 
drought impacts on production volumes and income outcomes 
represents an important initial background work that bridges an 
information gap and can be used by decision-makers when 
addressing risks and future sustainability. The findings are bene-
ficial in quantifying the absolute impact of drought on rice crops 
and in comparing the loss incurred with that of other major crops. 
This could facilitate the selection of the best feasible crop to be 
cultivated during drought conditions in order to mitigate potential 
risks and minimize impacts on crop production and economic loss. 

As the globe continues to warm, more extreme climate situations 
and the frequency of severe-to-extreme droughts are expected to 
increase in the future. The average mean temperature risk in India 
is predicted to increase by 2.4 to 4 ◦C by the end of the 21st 
century, which may surely cause more hydro-meteorological 
hazards (Krishnan et al., 2020). However, no study has 

investigated the comprehensive drought risk for crop production 
suggesting the best feasible location-specific risk mitigation stra-
tegies. Most previous research has focused primarily on drought 
hazards and their impacts, with very few studies considering in- 
depth drought risk assessment in combination with drought haz-
ards, vulnerability, and exposure risk. 

The results do not only help to understand the impacts of drought 
but also help to adapt the best feasible drought risk mitigation 
strategies and effective climate-proofing strategies over the most 
affected region under the worst-case scenarios. The results of 
future projections help prioritize the risk mitigation strategies and 
justify utilizing the appropriate resource inventory for imple-
mentation. Eventually, this will support government efforts to 
achieve sustainable agricultural development, alleviate hunger, 
and move closer to meeting the pledged international targets, 
including the Sendai Framework and the SDGs.   

Introduction 

Various studies on climate projections demonstrate that freshwater 
resources are strongly impacted by climate change worldwide, which 
can affect the sustainability of ecosystems and human societies (Bates 
et al., 2008). Water availability and accessibility are the most significant 
constraints for crop production. Therefore, it is crucial to address them 
in areas affected by water scarcity to maintain the crop production 
sustainability. According to the Intergovernmental Panel on Climate 
Change, most water resources worldwide will be subject to the adverse 
effects of climate change (Mancosu et al., 2015). Water shortage is a 
primary global issue, and many regions already experience serious water 
availability issues, which are expected to become more critical in the 
future (Bharat and Dkhar, 2018). In India, water demand has increased 
several manifolds over the years owing to the increasing urbanisation, 
agriculture expansion, population growth, rapid industrialisation, and 
economic development (Mall et al., 2006; Bhuvaneswari et al., 2013). 

The most critical impacts related to water resources are associated 
with agricultural systems and food security. Water supplies are often 
inconsistent, severely dependent on weather patterns, and unequally 
distributed, both spatially and temporally. In India, the climate is 
dominated by the monsoons. Monsoonal precipitation is not uniform 
throughout the country, and it creates erratic events, such as floods and 
droughts, which affect strategies and policies on water resource man-
agement (Saraf and Regulwar, 2018). As the globe continues to warm, 
an increasing number of water-related issues are expected. Additionally, 
the estimated increment of urban sprawl, deforestation, intensive 
industrialisation, and population growth further pressure the water and 
food security. A significant global warming has occurred in the last five 
decades (Jarraud and Steiner, 2012; Mancosu et al., 2015). If current 
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greenhouse gas (GHG) emissions rates are maintained, the global 
average temperature is likely to increase by nearly 5 ◦C or more by the 
end of the 21st century (Krishnan et al., 2020). The mean temperature 
over India by the end of the 21st century is predicted to increase by 
2.4–4.4 ◦C considering a GHG warming scenario (RCP8.5, the high- 
emission climate change scenario) compared to the average tempera-
ture in 1976–2005 (Krishnan et al., 2020). 

The temperature rise attributed to global warming is not uniform. 
Some areas experience greater warming and, thus, present more intense 
effects, including changes in rainfall patterns and higher temperature 
extremes. India is expected to witness more extreme climatic conditions 
in the future. Extreme dry and hot conditions that lead to more intense 
droughts and floods are likely to occur more frequently under future 
climate change scenarios. The frequency and spatial extent of droughts 
have increased significantly from 1951 to 2016 (Krishnan et al., 2020). 
In particular, areas over central India, southwest coast, southern 
peninsula, and north-eastern India have experienced on average more 
than two droughts per decade in that period. The area affected by 
drought has also increased by 1.3% per decade over the same period. 
Climate model projections indicate a high likelihood of an increase in 
the frequency (>2 events per decade), intensity, and area under drought 
conditions in India by the end of the 21st century under the RCP8.5 
scenario because of the high variability in monsoon precipitation 
(Krishnan et al., 2020). 

Given the significance of global warming effects, an increase in 
future drought risks in India is expected, especially in central areas. 
Therefore, the frequency and drought conditions in the future need to be 
investigated and future changes and the potential impacts must be 
analyzed. In recent, to the best of our knowledge, there have been some 
studies focused on the water storage anomalies, evaluation of drought 
identification, and analyzing drought characteristics and their severity 
over the major river basins including the Godavari River Basin in south 
India using different datasets, and drought indicators (Kumar et al., 
2021a; Sarkar, 2022; Kumar et al., 2020; Kumar et al., 2021b; Sehgal 
et al., 2017). Over the historical period, the studies by Kumar et al., 
2021a, Kumar et al., 2020 and Sarkar, 2022 used GRACE Groundwater 
Drought Index (GGDI) using GRACE data, Standardized Precipitation 
Evaporation Index (SPEI) using global gridded SPEI datasets of course 
resolution of 1◦ × 1◦, respectively, to monitor and characterize the 
regional drought over Godavari River Basin. Whereas Kumar et al. 
(2021b) used the SPI drought index to understand the future drought 
risk, potential changes of drought properties and characteristics over the 
homogeneous regions of the Godavari basin using the precipitation 
datasets with a spatial resolution of 1◦ × 1◦ from the Indian Meteoro-
logical Department (IMD) and Global Climate Model (GCM)—MIROC- 
ESM-CHEM. However, the potential changes in the frequency and 
spatiotemporal characteristics of future droughts have not been thor-
oughly investigated at the sub-basins and districts level over the God-
avari River Basin. Due to large-scale climate variation in India, the 
impacts are also varying from place to place, and hence comprehensive 
assessment is needed to determine the precise changes. In addition, a 
gridded analysis at a fine resolution of an entire river basin covering 
each sub-basin together over GRB is particularly lacking. Therefore, this 
study investigated long-term high spatial-resolution gridded data of 
past, present, and future periods based on different warming scenarios 
from a large ensemble high-resolution database, d4PDF (Database for 
Policy Decision-making for Future climate change), developed by the 
Japan Meteorological Business Support Center (JMBSC). The optimistic 
(+2 K) and pessimistic (+4 K) scenarios consider a 2 ◦C increase by the 
mid-21st century and a 4 ◦C increase by the end of the 21st century, 
respectively. 

The Godavari River Basin (GRB) was selected as the study area 
because it is the second-largest basin in India and a crucial primary 
water resource in central India (Kumar et al., 2021b; Sarkar, 2022). In 
GRB, rainfall is unpredictable and unevenly distributed. This is associ-
ated with frequent droughts, which affect agriculture production and 

socio-economic activities (Garg et al., 2016; Bhuvaneswari et al., 2013). 
Therefore, considering present drought risks and future challenges for 
agriculture, this study aims to assess and predict the climate change 
impacts on drought in this area. The specific objectives are to (1) analyse 
the standardised drought indices to quantify the drought occurrences 
using long-term historical and future climate data, (2) identify the areas 
facing high drought risk, and (3) investigate the respective impacts 
under the worst-case drought scenario to address potential risks over the 
GRB. Because, to propose effective mitigation measures, an integrated 
approach to investigate climate change considering future temperature 
projections and respective impacts should be developed to clarify the 
possible spatiotemporal changes in drought occurrences. 

Materials and methods 

Several recent studies predict that climate change in this century will 
have a profound effect on rainfall patterns and stream flows in the arid 
and semi-arid regions of the world. The occurrence of dry spells during 
the monsoon season, late arrival of monsoon rains, and uneven spatio-
temporal distribution of rainfall further exacerbate the situation. The 
high rainfall variability has a severe impact on the agricultural pro-
duction and the rural economy of the region. However, most studies are 
limited to the global or country scale. The translation of these pre-
dictions into river basin and sub-basins levels is challenging but 
important to clarify the risk levels and potential impacts. Because the 
quantitative knowledge about the impacts of climate change can provide 
meaningful insights to address its adverse effects. 

Therefore, spatiotemporal assessment is crucial to understand the 
precise impacts of climate change on drought and associated risks in the 
agriculture sector. And, hence, the location-specific changes (one sub- 
basin to another within the Godavari River Basin) and the relative sta-
tistical change over time have been analyzed in order to perform precise 
risk assessment, because the intensity and magnitude of impacts of 
climate change differ from place to place due to the rapid variability in 
driving factors such as rainfall and temperature. The purpose of analysis 
over past and present baseline periods was to understand the recent 
changes and variability over the space (between sub-basin and districts 
in sub-basins) and time (between past, and future periods), which helps 
determine the severity of risk over place and time, and useful for plan-
ning and implementing effective climate adaptation strategies towards 
achieving sustainable development goals (SDGs), number 6, 13 and 11. 

Study area 

This study was carried out in the GRB, located between 
73◦24′–83◦4′E and 16◦19′–22◦34′N. The GRB occupies nearly 9.5% of 
the geographical area of India (Fig. 1) and is second longest river in the 
country (Garg et al., 2016), encompassing an area of 313346 km2 across 
the states of Maharashtra, Madhya Pradesh Andhra Pradesh, Orrisa, 
Chhattisgarh, and a small part of Karnataka. 

GRB drains an area of 152598 km2 (i.e., approximately 49.7% of the 
total Godavari catchment area) in Maharashtra (CWC and NRSC, 2014), 
and it is an important primary water resource in Maharashtra and other 
surrounding states. Agriculture is highly dependent on rainfall, which in 
turn is influenced by the high inter-annual variability in monsoon 
rainfall and the occurrence of frequent droughts (Kumar et al., 2021b; 
Sarkar, 2022). The fairly heavy, irregular, and unevenly distributed 
rainfall varies temporally and spatially across the basin. All areas of the 
basin receive the maximum amount of rainfall (84% of the annual 
rainfall) during the monsoon period from June to September (Mondal 
et al., 2012, Kumar et al., 2021b). 

Datasets 

This study used both meteorological and geospatial data collected 
through primary and secondary data sources for the drought risk 
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assessment and impact evaluation. The obtained data were broadly 
categorised into physiographic and socio-economic datasets. The phys-
iographic dataset included a thematic geospatial layer of land use, land 
cover, and topographic elevation (DEM), which were obtained from the 
Oak Ridge National Laboratory (ORNL), Distributed Active Archive 
Center (DAAC), and Shuttle Radar Topography Mission (SRTM), 
respectively. The socio-economic dataset included population, crop 
production, and disaster damage data obtained from the Socioeconomic 
Data and Application Center (SEDAC), International Crops Research 
Institute for Semi-Arid Tropics (ICRISAT), Open Government Data 
(OGD) Platform India, and International Disaster Database (EM-DAT), 
respectively. Detailed information on data variables and their respective 
sources is provided in Table 1. 

Daily observed meteorological gridded datasets with the best avail-
able high spatial-resolution (precipitation: 0.25◦ longitude × 0.25◦

latitude; temperature: 1◦ longitude × 1◦ latitude) were obtained from 
the Indian Meteorological Department (IMD). This dataset has been used 
in drought monitoring as well as climate change research (Kumar et al., 
2020; Shah and Mishra, 2015). This dataset captured well the extreme 
rainfall variability in the foothill of the Himalayas region and Western 
Ghats (Pai et al., 2014). A future climate projection database called 
d4PDF (the database for Policy Decision-making for Future climate 
change) was used to examine the effect of anthropogenic warming on 
the projected changes in the frequency of droughts in GRB. This data-
base consists of outputs from multiple global warming simulations by a 
global atmospheric model with a horizontal grid spacing of 60 km. We 
selected d4PDF to estimate the future potential risk, due to its strengths 
(reducing the uncertainty in prediction) and advances (with the inclu-
sion of the large number of ensemble members varying with different 
initial boundary conditions and external forces). It is a large ensemble 

dataset (each set of experiments has 54 to 90 ensemble members each 
for future 4 ◦C warming (+4K), and 2 ◦C warming (+2K), respectively), 
for which initial conditions and lower boundary conditions are set 
differently, with varied external forces. This decreases prediction un-
certainty and has been widely used in impact assessments and adapta-
tion plans related to global warming (Ishii and Mori, 2020). This data 
was created particularly for use in impact assessment studies and 
adaptation planning for global warming and is available over specific 
periods, such as (+2K -warming scenarios available from 2031 to 2091, 
and + 4 K warming scenarios available from 2051 onwards). Hence the 
authors have redefined these both scenarios as optimistic (+2K from the 
available period 2031–2050, where the warming will like to increase by 
2 ◦C by the mid-21st century and we expect and are optimistic that it will 
not increase beyond considering the ongoing efforts of climate change 
adaptations. However, on the other hand side, if the greenhouse gas 
emission sustained like this, and global warming continues then there is 
a higher probability that the warming will increase by 3 to 4 ◦C after the 
mid-21st century to the end of the 21st century, as similar as the IPCC 
scenarios (RCP8.5). Considering this, the author has redefined this sit-
uation as a pessimistic scenario and used 4 K warming scenarios data 
over the available period from 2051 onwards to analyze the potential 
impacts of this pessimistic situation. Additionally, the d4PDF data were 
evaluated over Indian regions and found to be in good agreement (with 
spatial correlation coefficients of 0.99 and 0.76 in temperature and 
precipitation, respectively) with some of the highly resolved operational 
observed datasets of APHRODITE (Nayak and Takemi, 2022). 

Socio-economic datasets are important indicators for the evaluation 
of impacts. In this study, land use/land cover data (100 × 100 m spatial 
resolution) focusing on agriculture land and population density (reso-
lution of 1 km) were used as an indicator to analyse the impacts of 

Fig. 1. The study area map of GRB, India.  
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drought hazards (Meiyappan et al., 2017). The data file obtained in the 
GeoTIFF format (.tiff) was processed using ArcGIS 10.6 to prepare a map 
on a district-level scale for the analysis of district-level impacts of 
drought on crop production. The district-level statistical data (crop 
production and prices) were obtained from reputable and trustworthy 
data repositories (ICRISAT data portal and the Indian Governmental 
Data Portal, respectively), including annual crop production for 
1981–2015 and seasonal (Rabbi and Kharif) crop production for 
1997–2014 based on the period of data availability. 

Methodology 

In this research, we used a comprehensive approach to assess the 
climate change impacts on drought, and a comprehensive drought risk 
assessment to analyse the respective risks to the agriculture sector. This 
approach allowed for a deeper understanding of the characteristics of 
climate change and its perception on the occurrences of drought over 
spatial and temporal scales using a baseline (past and present refer-
ences) and future (21st century) timeframe analyses. This analysis was 
used to identify the locations and crops at higher risks, which can be 
used as background to define mitigation measures to minimise potential 

risks and maintain socio-economic sustainability towards achieving 
SDGs, as illustrated in Fig. 2. 

Post data processing 
To clarify the impacts of climate change, we considered two future 

climate change scenarios (optimistic and pessimistic) obtained from the 
d4PDF data simulations. The raw data (observed meteorological data 
and future climate change projections) were in different formats and 
resolutions, so bilinear regridding was applied to match the datasets at 
similar locations considering the performance and suggestions from 
previous studies using similar data structure (Kumar et al., 2020; Mistry, 
2019). The processed data were used for drought vulnerability and risk 
assessments and to predict the potential risks to crop production. The 
sub-basins boundaries were delineated via watershed delineation using 
DEM data (SRTM-30 m) in the Arc-hydrology tool of ArcGIS 10.6. The 
delineated watershed boundaries were further merged into 12 major 
sub-basins based on the location of meteorological stations currently 
used by the IMD to disseminate basin-level information over GRB. These 
12 sub-basins have been used as regional units for climate change 
impact assessments using the spatiotemporal modelling approach. A 
spatiotemporal analysis was conducted to determine the pattern and 
magnitude of change using Sen’s slope estimator of Mann–Kendall test 
(Kundu et al., 2015; Panda and Sahu, 2019). Several researchers have 
used the Mann–Kendall statistical test to quantify the significance of 
trends for time-series hydro-meteorological variables (Jhajharia et al., 
2014; Kumar et al., 2020; Yaduvanshi et al., 2021), and Sen’s slope 
estimator has been widely used to analyse the hydro-meteorological 
time series data (Kundu et al., 2015; Panda and Sahu, 2019). 

Datasets of high-resolution daily gridded precipitation and temper-
ature data from 01 January 1980 to 31 December 2019 were used to 
determine drought indices, namely the standardised precipitation index 
(SPI) and standardised precipitation evapotranspiration index (SPEI), 
over the historical baseline period. The baseline period was subdivided 
into two sub-timeframes, past and present. The past dataset included the 
first three decades (1981–2010), and the present timeframe dataset 
included the most recently available data (2011–2019). The purpose of 
this division was to clarify recent changes and variability on space (sub- 
basin and districts) over time (past and present periods). This analysis 
was used to determine the severity of risk over space and time on the 
GRB for the past 40 y. This was also be used to test the extent of the 
research hypothesis (“dry becomes drier and wet becomes wetter”) over 
different successive time frames. Moreover, a large ensemble of high- 
resolution gridded data (d4PDF) was used to investigate the impacts 
of climate change on future drought occurrences during the 21st century 
in the GRB under optimistic and pessimistic warming scenarios, under 
the influence of the worst-case climate change scenario (RCP8.5). The 
drought indices were used to estimate the level of drought risk by ana-
lysing drought hazard, vulnerability, and exposure. The results were 
used to identify the most vulnerable drought risk zones and evaluate the 
risks associated with crop production and the economy of farming 
communities. The potential impacts on crop production and economy on 
the most vulnerable regions were then determined, and they can be used 
to develop and implement effective risk mitigation strategies. 

Climate change impact assessment using drought analysis 
SPI and SPEI are used as monitoring tools and to investigate the 

occurrences of drought events. They can be calculated at any timescale 
but are usually calculated over 1, 3, 6, 12, and 24 months, and can be 
applied to meteorological, hydrological, and agricultural drought phe-
nomena (Kumar et al., 2021b). Drought calculated using 6- and 12- 
month timescales are the most useful to investigate agriculture 
droughts and hydrological droughts, respectively (Beguería et al., 2010; 
Musei et al., 2021; Niranjan Kumar et al., 2013; Ripin et al., 1989; 
Vicente-Serrano et al., 2010b). Many researchers have analysed the 
drought conditions at 12-month timescale in India (Gupta et al., 2020; 
Kumar et al., 2021a). Because, In India, a major portion of annual 

Table 1 
Data type and sources.  

Data type Variables Data range Source 

Meteorological  • Rainfall 
Maximum 

temperatureMinimum 
temperature 

1980–2019 
(daily) 

- National Data 
Center (NDC) 
- Indian 
Meteorological 
Department 
(IMD)  

Climate 
projection 
scenarios 
(d4PDF)  

• Rainfall 
Maximum 

temperatureMinimum 
temperature 

2031–2050 
(+2 K) 

- Data Integration 
and Analysis 
System Program 
(DIAS) 
- Japan 
Meteorological 
Business Support 
Center (JMBSC)  

• Rainfall 
Maximum 

temperatureMinimum 
temperature 

2051–2100 
(+4 K)  

Physiographic 
datasets 

Land use/land cover 
(LULC) 

Recently 
available 

- Oak Ridge 
National 
Laboratory 
(ORNL) 
- Distributed 
Active Archive 
Center (DAAC) 

DEM 30 m - Shuttle Radar 
Topography 
Mission (SRTM)  

Socio-economic 
datasets 

Crop production 
statistics 
Rice production 
Harvested areaCrop price 

Annual - International 
Crops Research 
Institute for Semi- 
Arid Tropics 
(ICRISAT) 

Seasonal - Open 
Government Data 
(OGD) Platform 
India 

Population Density 
(people/ 
km2) 

- Socioeconomic 
Data and 
Application 
Center (SEDAC) 

Drought damage 
statistics 
Occurrence 
Crop damage 
Economic lossAffected 
population 

Recently 
available 

- EM-DAT The 
International 
Disaster Database   
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rainfall is received during the monsoon season (4 months) and is fol-
lowed by almost 8 months of the dry period. So, the hydrologic regime 
can be represented well by a 12-month scale over India. Moreover, the 
12-month SPI and SPEI reflect the annual trend of the precipitation 
pattern, so they are well suited for the estimation of annual water con-
ditions and to investigate seasonal variations and their respective im-
pacts on crop production. Therefore, we calculated the values of SPI and 
SPEI using a 12-month timescale, considering the significance of 
drought impacts on the agriculture and water resource sectors. The 
calculated SPI and SPEI values were used to evaluate the climate change 
impact on drought occurrences. That is, monthly values of SPI and SPEI 
at 12-month timescales were used to identify intra-annual variability, 

and the corresponding impacts of extremely-to-severely dry episodes 
(drought events) on rice production were categorised based on the 
criteria provided in Table 2. We focused on the impacts to agriculture 
because the study area is an important agricultural area, and most res-
idents depend on agriculture for their socio-economic welfare. The 
indices were calculated using observed meteorological data and future 
climate projections. The SPI and SPEI monthly values represent the 
average of the last 12 months, whereas the annual value is the sum-
mation (or average) of each year. For example, the SPI and SPEI of 
January 1981 were calculated using the previous 12 months of climate 
data, from January 1980 to December 1980. A similar concept was 
applied for the analysis of drought indices using future climate 

Fig. 2. Schematics of research methodology for climate variability and drought risk assessment.  
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projection datasets. 

Drought indices. The calculation of SPI and SPEI is based on long-term 
data, preferably at least 20–30 y of data, and larger periods are rec-
ommended. The probability estimates of wet and dry extremes are weak 
if the data sample size is small. SPI was developed to measure the rainfall 
deficit over multiple timescales, and to represents the impact of 
droughts on the availability of various water resources, thereby 
providing a useful background for decision makers. In 2009, the world 
meteorological organization (WMO) recommended SPI as the key pri-
mary meteorological drought index for countries to use in monitoring 
drought conditions (WMO, 2012). In over 70 countries, SPI is used to 
monitor the drought in operational modes. Many drought planners 
appreciate the versatility of this index. SPI is also used by a number of 
universities, research institutions, and National Meteorological and 
Hydrological Services worldwide for drought monitoring, early warn-
ings, and assessment of drought severity. As SPI can be calculated at 
various timescales, multiple events that affect agriculture and water 
resources can be investigated. SPI can also be calculated on gridded 
precipitation datasets, allowing for a broader range of users than those 
who only work with station-based data. (WMO, 2012). However, SPI is 
not the most suitable index for climate change analysis because tem-
perature is not an input parameter. As precipitation is the only input, SPI 
does not account for the temperature component, which affects the 
overall water balance and water use of a region. This drawback can 
hinder the comparison of events of similar SPI values but different 
temperature scenarios. This issue can be overcome by using a newly 
developed index (SPEI), which addresses the Potential Evapotranspira-
tion (PET) issues by including temperature data in the calculation. 
Therefore, SPEI was selected as the preferred index in this study for 
further assessment of drought identification and agricultural drought 
risk assessment, because it considers the effect of both rainfall and 
temperature. 

Calculation of SPEI. The SPEI drought index was proposed by Vicente- 
Serrano et al. (2010a), and it is based on the water balance principle. 
Similar to SPI, long-term time-series data for precipitation and tem-
perature for the desired period are required to calculate SPEI values. At 
least 30 y of complete data set are desired. SPEI uses the difference 
among precipitation and the reference crop evapotranspiration as the 
input datasets to evaluate dry and wet episodes at a given location. 

The climate-water balance (water surplus or deficit) was calculated 
using: 

Di = Pi − EToi (1)  

where Di and Pi are the moisture deficit (mm) and precipitation (mm) in 
month i, respectively; and EToi is the reference crop evapotranspiration, 
generally calculated using a simple climatic water balance, and it is 
expressed as: 

ETo = 16K
(

10T
I

)m

(2)  

where the ETo is the reference crop evapotranspiration, K is a constant, T 

is the monthly temperature, I is the heat index, and m is a coefficient 
dependent on I. 

The values of Di can be aggregated for a given period by considering 
the accumulation of the water balance during that period. 

Dk
i =

∑k− 1

j=0
Di− j (3)  

where, k is the aggregation (accumulation) period, and i is the observed 
month. 

SPEI can be calculated as the standardised value of the log-logistic 
probability distribution function of the D series. 

f (x) =
β
α

(x − y
α

)β
(

1 +
(x − y

α

)β
)− 2

(4)  

where α, β and y are the scale, shape, and origin parameters for D values 
in the range (y > D < ∞). Therefore, the log-logistic distribution func-
tion adopted for the standardized D series for all time scales is provided 
by: 

F(x) =

[{

1 +

(
α

x − y

)β
}]− 1

(5)  

where F(x) value transforms to a normal variable through the following 
approximation: 

SPEI = W −
C0 + C1 + w + C2w2

1 + d1+d2w2+d3w3 (6)  

W =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2ln(P)

√
P ≤ 0.5(7)

where P is the probability of exceeding determined by the D value as P =
1–F(x). If P > 0.5, then P is replaced by 1–P and the sign for SPEI is 
reversed. Moreover, C0, C1, C2, d1, d2, and d3 are constants determined to 
be the following: C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 =

1.432788, d2 = 0.189269, and d3 = 0.001308. 
The average SPEI value is 0 and the standard deviation is 1. Since 

SPEI is a standardized variable, SPEI values for different time and spaces 
can be compared to each other (Vicente-Serrano et al., 2010a). An SPEI 
of 0 indicates 50% of the cumulative probability of D. As SPEI is a 
standardised value, it can be categorised by the dryness/wetness grade 
shown in Table 2. 

Based on this SPEI intensity scale, drought events are categorized as 
near normal, moderate, severe, and extreme droughts. Similarly, wet 
events are categorised into moderately, severely, and extremely wet for 
the respective positive values. That is, SPEI represents the severity of the 
dry and wet periods. A time-series analysis was performed to identify the 
occurrences of these dry (droughts) and wet (flood) events. Major 
droughts and floods-like episodes over the selected time frame in the 
GRB area were identified, and the respective impacts of droughts on 
crop production were then investigated. 

Drought risk assessment 
To appropriately define the drought risk, it is essential to identify the 

drought hazard extent, drought exposure, and drought vulnerability. 
Therefore, we characterised the spatial variations in drought hazard 
(degree of severity analysed through assessment of probability and 
drought intensity), drought exposure, and drought vulnerability to 
identify the total drought risk for crop production. A flowchart (Fig. 2) 
for agriculture drought risk assessment was developed by referring to 
methods and processes adopted by previous researchers (Prabnakorn 
et al., 2019; Sun et al., 2020). 

Analysis of agricultural drought risk elements. Both climate and socio- 
economic data were considered for the agricultural drought risk anal-
ysis. Climate data included daily precipitation, and maximum and 

Table 2 
Intensity scale for drought categorisation based on SPEI range (Beguería et al., 
2010; Musei et al., 2021; Ripin et al., 1989; Vicente-Serrano et al., 2010a).  

Class SPEI value Drought category 

1 2.0 or greater Extremely wet 
2 1.50 to 1.99 Severely wet 
3 1.00 to 1.49 Moderately wet 
4 0.99 to − 0.99 Near normal 
5 − 1.00 to − 1.49 Moderately dry 
6 − 1.50 to − 1.99 Severely dry 
7 − 2.00 or less Extremely dry  
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minimum temperatures. The drought hazard was analysed using the 
SPEI computed based on a long-term historical period (1980–2019). To 
identify the worst-case scenarios for drought hazards (i.e., year with 
highest number of sever-to-extreme droughts), each statistical indicator 
of drought characteristics was analysed using the theory of runs. 

Drought characteristics based on theory of runs. The 12-month SPEI 
drought indices were utilised to assess the spatial and temporal changes 
in drought characteristics, with threshold values of − 1 and 1 for dry and 
wet episodes, respectively. The statistical indicators were computed 
based on the definitions provided in Table 3. 

Fig. 3 shows the diagrammatic representation of drought charac-
teristics. The positive and negative values of SPEI are considered 
drought and non-drought events, respectively. A drought event is 
defined as a period with SPEI values below the threshold. Therefore, to 
measure the drought duration and drought severity, a threshold value 
was defined. The drought duration is the period through which SPEI is 
continuously negative, that is, it starts when SPEI = − 1 and ends when 
SPEI > 0. The drought severity is the cumulated SPEI value within the 
drought duration, and it is defined by the equation provided in Table 3. 
The drought intensity is the ratio of drought severity to its duration, and 
it represents the magnitude of the drought event. The drought charac-
teristics were estimated using the 12-month SPEI over the entire base-
line reference period (1981–2019). Based on the time-series analysis of 
drought statistics (drought frequency, occurrence number, severity, 
magnitude, intensity), a year was identified for the worst-case drought 
scenario (i.e., the year mostly affected by severe-to-extreme droughts 
with higher drought severity). The worst-case scenario was considered 
to assess and map the drought hazards risk. The severity of drought 
hazard was analysed based on the criteria provided in Table 4, and the 
areas under higher agriculture drought hazard risk over GRB were 
mapped using GIS. A multi-criteria classification table was prepared to 
assess the total drought risk over the GRB (Table 4). 

For values above zero, SPEI was categorised as no (safe), low, me-
dium, high, and very high (extreme) risks in terms of drought hazard. 
Similarly, the vulnerability to drought hazard was analysed using land 
use as exposure risk, and population density as sensitivity risk. Exposure 
was cross tabulated with sensitivity to identify the vulnerability of 
agriculture to droughts. Ranking values were assigned, and the final risk 
map was illustrated considering the risk intensity (low, medium, high, 
and very high) of agriculture to droughts. 

Estimation of agricultural drought risk. The final agricultural drought risk 
was analysed by assessing the drought hazard and drought vulnerability 
risk maps. 

DR = DH × DV (DE × DS), (8)  

where DR, DH, DV, DE, and DS are the drought risk, hazard, vulnera-
bility, exposure, and severity, respectively. The two-dimensional table 
(Table 5) was applied to the classified hazard map and the classified 

vulnerability map to produce the risk map. 
The overall risk score was derived by multiplying the likelihood by 

potential impact of the risk. Risks were classified as safe (no risk = 0), 
low priority (4–6), medium priority (8–9), high priority (10–12), and 
very high-risk priority (15–25). A risk matrix was prepared to assign a 
risk level to each pixel. The final drought risk mapping was obtained by 
overlaying the hazard risk map and the vulnerability risk map using 
multi-criteria evaluation techniques in GIS based on the rank and 
assigned scores under the worst-case scenario. 

Risk evaluation and impact analysis 
Droughts reduce crop yield by creating unfavourable conditions for 

crop development. They are occurred not only in arid regions but also in 
areas with relatively abundant precipitation. Therefore, understanding 
the extent of hazard, exposure, vulnerability, and the risk of droughts to 
agriculture is critical for the developing appropriate water management 
and mitigation measures to reduce adverse impacts and increase crop 
yield. Therefore, the developed agriculture drought risk analysis was 
used to identify the most affected and vulnerable areas (sub-basins and 
districts) over GRB. The identified districts were used to evaluate the 
drought impact, and agricultural statistical data (crop production and 
prices) were obtained for the districts identified. Statistical estimation 
was performed to analyse the drought impact according to the loss or 
gain in crop yield and economy during a drought year compared to the 
previous production year. 

Results and discussion 

Climate variability 

Temporal variability in rainfall and temperature 
The intra-annual variability and trends of climatic variables (rainfall 

and temperature) were analysed for the baseline reference period 
(1981–2019) over the GRB, as shown in Fig. 4. The slope of the trendline 
represents the increasing, decreasing, and non-significant nature of 
climate variability during that particular timeframe. 

A slightly decreasing trend (− 0.6338 mm) was observed for annual 
rainfall, whereas a significant increasing trend (0.0191 ◦C) was observed 
for annual maximum temperature from 1981 to 2019. These results 
indicated increased warming over GRB. Rainfall in India is primarily 
driven by the monsoons (Krishnan et al., 2020; Kumar et al., 2013; 
Yaduvanshi et al., 2021). The amount of rainfall in the year depends 
mostly on the amount of rain received during the monsoonal months 
(June–September). Therefore, we analysed the monthly climatology and 
relevant contribution from seasonal monsoonal rainfall (Fig. 4) to esti-
mate the contribution and understand the potential changes under the 
impacts of climate change over the 21st century in the GRB. The con-
tributions were estimated using time-series data over the past four de-
cades, and the results showed that the monsoonal contribution in a year 
varied between 80 and 90% in the GRB area. 

A significant decrease in annual rainfall, which was 90% attributed 
to the contribution of monsoonal rainfall, was observed during the 
second half (2015–2019) of the present decade compared to the annual 
rainfall received during the past reference period (1981–2010). This 
might partially explain the recently experienced frequent intense pre-
cipitation and floods in addition to drought events in the GRB area, 
which have damaged the water resource infrastructures and caused 
water scarcity problems during non-monsoonal months, thereby 
increasing the difficulty in fulfilling local water demands. Therefore, the 
non-monsoonal months (~8 months) of a year were associated with 
negligible rainfall, and the management of external water sources are 
crucial to help meet the demands. The long-term impact of climate 
change was determined using the relative statistics of percentage change 
for the present, future optimistic, and future pessimistic scenarios 
compared to the past reference period. An average annual mean pre-
cipitation of 1032.50 mm was recorded for the past reference period, 

Table 3 
Equations for the calculation of drought parameters for spatiotemporal drought 
analysis.  

Drought 
parameter 

Equation Symbol and units 

Duration 
D =

∑n
i=1di
n 

D = drought duration (months) 
di = duration of ith drought event 
n = total number of drought events 

Frequency F =
nm
Nm

× 100 F = drought frequency (%) 
nm = number of drought months 
Nm = total number of months 

Intensity I = |

1
n
∑n

i=1
SPEIi |

I = drought intensity (− ) 
n = number of drought occurrences in 
months with SPEI < − 1 
SPEIi = SPEI value below the threshold (− 1)  
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which was slightly reduced to 1012.36 mm for the present reference 
period. The average annual mean rainfall is expected to increase by 46% 
and 56% under the optimistic and pessimistic scenarios, respectively 
(Fig. 5). That is, the average annual mean, maximum, and minimum 
rainfall values gradually increased in the present, future optimistic, and 
future pessimistic scenarios. 

The years with lower or higher rainfall values than normal may 
experience severe drought or floods, respectively, depending on the 
magnitude of those values. The risk from such a drought or flood episode 
depends on the severity of that episode, and the respective impact de-
pends on the intensity of that episode and the location-specific response. 
Therefore, to understand the location-specific risks, we analysed the 
spatial variability and changes using baseline reference, future opti-
mistic, and future pessimistic climate scenario data. 

Spatial variability and change in rainfall and temperature 
Location-specific changes (one sub-basin to another within the GRB) 

were analysed separately based on spatial variability trends for annual 
rainfall and annual mean temperature, and the results over the baseline 
reference period are shown in Fig. 6 and Fig. 7, respectively. The areas 
with increasing or decreasing trends are less or more vulnerable, 
respectively, to water availability risks. 

The spatial variation of rainfall over the GRB showed that some sub- 
basins (Middle Godavari, Maner, Manjra, Lower Godavari, Upper God-
avari, Purna, Penganga, and sub-basin of Wainganga and Pranhita) 
presented a decreasing precipitation trend and higher vulnerability to 
water availability risk from 1981 to 2019. The remaining sub-basins 
(Sabari, Indravati, Wardha, and South-Western part of Pravara) 
showed a positive (increasing) trend for precipitation during this period 
and, therefore, lower risk for water availability (Fig. 6). Approximately 
67% of the GRB area (8 of 12 sub-basins) showed a decreasing rainfall 
trend, whereas 33% of the area (4 of 12 sub-basins) showed an 
increasing rainfall trend and less vulnerability to drought occurrence. 
This is because of increasing temperatures caused by climate change and 
global warming which will make existing dry areas drier and wet areas 
wetter. Due to large-scale climate variation in India, the impacts are also 
varying from place to place, and therefore, some locations show 
increasing precipitation, and hence there will be a high probability that 
such locations will experience less intense and lower drought risk. In dry 
locations, this means that as temperatures rise, water evaporates more 
quickly, and thus increases the risk of drought or extending drought 
periods. 

Similar to the precipitation analysis, we examined the spatiotem-
poral changes in temperature to investigate its impacts. Annual mean 
temperature was used to analyse the spatial variation of temperature 
over the same timeframe of baseline reference period (1981–2019). 
Overall, there was a significant positive trend in all sub-basins, with a 
slight variation in magnitude. No single sub-basins showed a negative 
trend (Fig. 7). This demonstrates that temperature showed an increasing 
trend throughout the past four decadal timespans, which indicates an 
increasing warming over the GRB area. 

Rainfall showed higher spatial variability than temperature, with a 
greater change in magnitude during the baseline reference period. We 
did not observe any significant reduction in temperature across all sub- 
basins of the GRB. All sub-basins showed an increasing temperature 
trend throughout the past four decades (1980–2019), so we assumed a 
significant increasing temperature scenario in the future for the GRB. 

Because of the irregular distribution of rainfall over space and time 
and the prominent issue of water scarcity, we analysed the spatiotem-
poral modelling of drought. Moreover, to investigate the climate change 
impacts on drought occurrences, we estimated the spatiotemporal 

Fig. 3. Drought characteristics using theory of runs for a given threshold level (modified after Lee et al., 2017).  

Table 4 
Multi-criterial classification table for agriculture drought risk elements.  

Drought risk 
category 

Rank Drought hazard 
classification 

Drought vulnerability 
classification (drought exposure 
× sensitivity) 

No risk (safe) 0 Beginning of wet 
episode (SPEI ≥ 0) 

PD < 25 percentile and non- 
agriculture land 

Low risk 2 Near normal drought 
(− 0.99 ≥ SPEI < 0) 

PD < 25 percentile and 
agriculture land 

Medium risk 3 Moderate drought 
(− 1.49 ≥ SPEI <
− 1.00) 

PD (25–50) percentile and 
agriculture land 

High risk 4 Severe drought 
(− 1.99 ≥ SPEI ≤
− 1.50) 

PD (50–75) percentile and 
agriculture land 

Very high 
risk 

5 Extreme drought 
(SPEI ≤ − 2.00) 

PD > 75 percentile and 
agriculture land 

*PD: Population Density (people/km2). 

Table 5 
Risk rank and classification.   

Drought hazard Drought vulnerability 

Potential impacts 

0 (safe) 2 3 4 5 

Likelihood 0 (safe) 0 0 0 0 0  
2 0 4 6 8 10  
3 0 6 9 12 15  
4 0 8 12 16 20  
5 0 10 15 20 25  
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pattern of drought occurrences and severity over different timeframes 
(past, present, future optimistic, and future pessimistic) using 12-month 
SPEI drought indices. 

Drought analysis 

Temporal variation of drought occurrences 
To investigate the occurrence of drought events and the fluctuation 

rate of dry and wet episodes, the annual average values of the time-series 
SPEI were plotted over the baseline period (Fig. 8). The SPEI showed a 
significant decreasing trend continuously over the baseline reference 
period. This indicated an increase in the magnitude of the intensity of 
droughts throughout the investigated timeframe. 

The SPEI values represent the degree of severity of the dry and wet 
periods over each grid cell for the time scale considered during the 
analysis. As mentioned in Section 2.3, positive and negative index values 
denote the occurrence of wet and dry events, respectively, and pro-
longed dry occurrences can lead to serious drought events that may 
severely impact crops and livelihoods. 

Identification of drought occurrences and statistics 
Fig. 9 shows the time-series pattern of temporal variation of dry and 

wet episodes based on the threshold values. They were used to identify 
major droughts and floods (Table 6). The most severely-to-extremely dry 
year from the list of detected major drought events was considered the 
worst-case drought scenario and used to further analyse the drought 
impacts. 

Spatial variation in drought occurrences 
The results of the Mann-Kendal-Sen’s slope estimator were used to 

investigate the magnitude of the changes in the extent of drought oc-
currences over each sub-basin in the GRB using the 12-month SPEI, as 
illustrated in Fig. 10. 

The negative results (lower values) showed a decreasing trend as the 
drought intensity increased, and such locations were at higher drought 
risk. Conversely, positive results (higher values) showed an increasing 
trend as drought intensity decreased, i.e. areas less vulnerable to 
droughts. The results showed that nine sub-basins out of twelve (around 
75% of GRB area) observed decreasing (negative-SPEI) trend which 
indicated that such locations (sub-basins) represent the areas for higher 
vulnerability and increased drought risk during the past four decadal 
periods. Only three sub-basins (Sabari, Pravara, and Indravati) showed 
an increased (positive-SPEI) trend. This indicated that only 3 subbasins 
(around 25% of the areas) presented a lower drought risk and were less 
vulnerable to drought occurrences compared to other sub-basins. These 
results also correlate with the finding of increasing drought severity over 
the Pranhita, Manjra, Wardha, and Lower Gobadavri subbasins in the 
study conducted by Sarkar, 2022. To validate the results, we compared 
the spatial pattern trend of the time series of climate data with reputable 
national disaster databases (EM-DAT), which comprise essential core 
disaster data on the occurrence and impacts of over 22,000 major dis-
asters worldwide from 1900 to the present. This database was compiled 
using numerous sources, including research institutes, UN agencies, 
non-governmental organisations, insurance companies, and press 
agencies. Although 2009 was one of India’s worst drought years, no 
damage was recorded in this national-level database. This demonstrates 

Fig. 4. Intra-annual climate variability and trend over the baseline reference period (1981–2019).  
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that it is crucial to conduct regional level drought analysis and impact 
assessments. To further understand the nature of droughts, we estimated 
decadal variations in dry and wet episodes in each sub-basin in terms of 
occurrence number, duration, frequency, and magnitude of severity and 
intensity of droughts over each sub-basin of GRB. 

Drought characteristics – Variability and change using theory of runs 
The 12-month SPEI drought indices were used to assess the spatial 

and temporal changes in drought characteristics. To understand in detail 
the variations over time and space, we analysed the drought charac-
teristics using past and present reference timeframes (Fig. 11). 

The results of drought persistent and nature showed that, on average, 
the number of drought occurrences increased during the present decade 
(2011–2019) compared to the past three decades (1981–2010). There-
fore, the estimated probability of decadal drought occurrence increased 
from 10% to 17% from the past to the current decade. Drought severity 
also increased in the present reference time, which indicated that the 
drought intensity increased over the GRB (i.e. a more disastrous nature 
of drought was observed, which is expected to increase in future years). 
Similar results of the probability of increased drought severity in the 

future over the GRB have been reported by Kumar et. al., 2021a. 
However, the changes in the frequency and characteristics of droughts in 
the future had not been fully investigated at the sub-basins and districts 
level over the Godavari River Basin. Therefore, we used the future 
warming scenarios of d4PDF data to study the outlook of future drought 
perception and potential socio-economic impacts. We also investigated 
the effects of anthropogenic warming on the projected changes in the 
frequency of droughts over the sub-basins of GRB (Fig. 12). 

Future drought frequency showed an overall increase under both 
scenarios compared to the past reference period. Among the drought 
categories, the frequency of severe-to-extreme droughts is expected to 
increase continuously under both warming scenarios over the near 
future (2031–50) and far future (2051–2100), whereas total droughts 
(including moderate, severe, and extremes droughts) is expected to 
significantly increase in the near future under the optimistic scenario 
and slightly decrease in the far future under the pessimistic scenario 
(Fig. 12-A and B). The gradual increase in precipitation amount and 
frequency of wet days can potentially contribute to reducing the in-
tensity of future droughts events at some places in the GRB. 

Some sub-basins (Indravati, Lower Godavari, Sabari, Wardha, 

Fig. 5. Influence of climate change on annual average rainfall and temperature using past, present, future optimistic and pessimistic scenarios over GRB.  
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Fig. 6. Trend of spatial variation of rainfall over a baseline (1981–2019) reference period.  

Fig. 7. Trend of spatial variation of rainfall and annual mean temperature over a baseline (1981–2019) reference period.  

K.P. Bharambe et al.                                                                                                                                                                                                                           



Climate Services 32 (2023) 100415

13

Wainganga, and Pranitha) showed an increasing frequency of total and 
severe-to-extreme droughts under the optimistic scenario (+2 K). 
Whereas under the pessimistic scenario (+4 K), they showed a decrease 
in the frequency of total droughts and a gradual rise in the frequency of 
severe-to-extreme droughts (Fig. 12-C and D). This implies that if global 
warming continues, an extreme drought situation will likely occur in the 
future over the GRB. Therefore, it is crucial to understand the persis-
tence of drought and its impact to determine which sub-basins are more 
vulnerable considering their socio-economic activities, and hence SPEI 
values over both scenarios have been used to conduct spatial analysis. 

Fig. 13 demonstrates the results for the probability of drought oc-
currences and its spatial variation in the future under the impact of 
increasing warming, and it indicates that more drought episodes are 
likely to occur at the central belt, particularly over the sub-basins of 
Wardha, Wainganga, Pranitha, and part of Indravati and Lower 

Godavari. Therefore, the results suggest that drought mitigation mea-
sures should prioritise these areas. This spatiotemporal analysis was also 
used to test the hypothesis “dry become drier and wet become wetter in 
the future” for future climate change scenarios. The hypothesis was 
demonstrated to be true over most sub-basins. The sub-basins of Pen-
ganga, Wardha, and Wainganga-Pranhita, located at the north-western 
part of GRB, were predicted to present lower precipitation (drier) in 
the future, whereas the sub-basins of Sabari, Indravati, and the south- 
west part of Pravara and Upper Godavari were predicted to present a 
gradual increase in precipitation (wetter) in the future (Fig. 13-A and B). 

The hypothesis was considered negative (false) in a few locations, 
including the lower south and lower southeast districts of the GRB. This 
also confirms that the climate change impacts vary with location and 
time. Therefore, there is a need for local assessments of climate change 
risks and impacts. Accordingly, this study performed a comprehensive 
assessment of drought risks and impacts on agriculture. 

Drought risk assessment and impacts analysis 
The agricultural community is a major vulnerable community in the 

GRB. Because of the uneven rainfall distribution, it is difficult for 
farmers to understand the drought situation and the associated impact. 
Therefore, to identify the level of risk and response capacity, we ana-
lysed the comprehensive drought risk assessment using various geo-
spatial data. The results of the drought risk assessment were helpful in 
the identification of areas at higher drought risk and more vulnerable to 
the potential climate change impacts, which was used to further eval-
uate socio-economic impacts under the worst-case drought scenarios. 

The assessment was based on the conceptual approach proposed by 
the United Nations Development Program (Prabnakorn et al., 2019) and 
applied by Sun et al. (2020). It consists of assessing the hazard, exposure, 

Fig. 8. Intra-annual variability of SPEI over a baseline (1981–2019) reference period at GRB.  

Fig. 9. Dry and wet episodes according to time-series SPEI over a baseline (1981–2019) reference period.  

Table 6 
Major drought and flood events based on SPEI values.  

Number Major drought events Major flood events 

SPEI SPEI 

1 1985 1984 
2 1992 1988 
3 2003 1990 
4 2009 1991 
5 2011 2006 
6 2012 2007 
7 2016 2010 
8 2019 2011 
9  2013 
10  2014  
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and societal vulnerability, which are then combined to determine the 
risk of significant impacts from any hazards. The results of the 12-month 
SPEI were further analysed to illustrate the level of drought hazard risk 
and to identify the worst-case drought scenario across each sub-basin 
over the GRB. Based on the drought indices (SPEI-12) during the base-
line period (1981–2019), we identified drought years (severe-to- 
extreme) and normal years. The year 2012 and 2009 faced a higher 
frequency of total drought events, at 57 and 56, respectively. Many re-
searchers suggested that the vegetation condition can be used as an in-
dicator for the identification of the drought condition of an area, and the 
Normalized Difference Vegetation Index (NDVI) has been widely used to 
identify the drought-related stress to the vegetation (Artikanur et al., 
2022; Gumma et al., 2019; Nejadrekabi et al., 2022). Therefore, this 
study used the Normalized Difference Vegetation Index (NDVI) as the 
main vegetation indicator to evaluate drought conditions during the 

severe drought years at GRB. The NDVI values were derived using 
MODIS-16-day composites (from, https://modis.gsfc.nasa.gov/), and 
the maps were illustrated for these two severe droughts years (Fig. 14). 
The range of the NDVI values indicates the drought severity, and based 
on the drought index scale, the areas affected by drought indicated by 
low NDVI values. Whereas the high NDVI values represent less drought- 
related stress to the vegetation, and hence represent the low-drought 
severity and risk over such areas. 

NDVI maps from 2009 and 2012 indicated the onset and extent of the 
drought effect on agricultural areas. According to the findings, the 
droughts in 2009 (Fig. 14-A) and 2012 (Fig. 14-B) had the greatest 
impact on agricultural areas (Fig. 14-C) compared to other land use 
types in the Godavari River Basin (Fig. 14-D). The major portion of the 
agricultural area covering the sub-basin of Pravara, Upper Godavari, 
Purna, Penganga, Manjra, Middle Godavari, Maner, Wardha, and 

Fig. 10. Spatial variation of trend (Fig-A) in drought occurrences based on M–K trend using12-month SPEI over sub-basins of GRB (Fig- B) during a baseline 
(1981–2019) reference period. 
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northern Wainganga & Pranhita has shown higher drought severity 
compared to the other areas during these two sever-drought years at 
GRB. Therefore, the occurrence of drought is well associated with 
reduced vegetation area and mean NDVI values during these both severe 
drought years. This also validated the results of drought hazard esti-
mation using SPEI-12 over GRB. However, in the category of severe-to- 
extreme droughts, 2009 faced a higher frequency of events (28) than in 
2012. Therefore, the SPEI computation in 2009 was considered the 
worst-case scenario for the vulnerability assessment, which was used to 
determine the most affected sub-basin and highly vulnerable districts. 
Using the criteria provided in Table 4, the severity of drought hazard 

was mapped, and the hazard risk map was generated to illustrate the 
low, medium, high, and very high drought risks for the agricultural 
sector (crop production and economic loss of the farming community). 
The results showed that approximately 92% of the GRB area was 
affected by the drought in 2009. Each sub-basin and district faced risks 
with different levels of degree of vulnerability, based mostly on the as-
sets directly exposed to the effects of drought, such as crops. Because 
agriculture is the most impacted sector by droughts in this area, and it is 
primarily rainfed and mostly dependent on rainfall, we used land-use 
type as an indicator to analyse the agricultural drought risks. The 
land-use types were divided into agricultural land and others because 

Fig. 11. Drought characteristics over the baseline (1981–2019) included past (1981–2010) and present (2011–2019) reference periods.  

Fig. 12. Evaluation of the impacts of climate change on droughts using the drought frequency for total drought events (Fig. A and C), and severe-to-extreme drought 
events (Fig. B and D), over the past and future periods. 
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whenever there is a drought, the area under agricultural land is at risk. 
Accordingly, the land-use map was categorised into two categories: risk 
class, representing the land cover under agriculture; and no risk class, 
representing the land cover other than agriculture; and they were used 
to define the exposure risk map. 

The sensitivity risk is the degree of dependency on resources that are 
affected by the hazards. Therefore, to analyse the drought sensitivity 
risk, population density (PD) was considered a resource affected by 

drought (i.e. economic and health risk). People are affected by water 
scarcity and food insecurity as a result of crop yield reduction and 
economic loss caused by droughts. Therefore, the PD data (people/km2) 
was obtained over the same period as the worst-case drought year for the 
hazard risk assessment. The PD was further reclassified into four classes 
based on the percentile distribution (Table 4), and the risk was further 
assessed. The districts with higher number of people per square kilo-
metre were considered more vulnerable and more sensitive to droughts 

Fig. 13. Spatial variation of drought occurrences over the past and future periods at GRB, illustrated in Fig (A) and (B), respectively under future warming scenarios.  

Fig. 14. NDVI maps showing the onset of drought and its spatial extent of effects on agricultural areas during the severe drought years of 2009 and 2012 at GRB.  
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hazard in terms of the degree of damage caused to individuals, partic-
ularly for water requirements and economic loss. The areas with 
comparatively smaller number of people per square kilometre were 
considered less vulnerable to drought risks and associated impacts. 
Accordingly, a sensitivity risk map was prepared and overlayed with the 
exposure risk map to assess the level of vulnerability risk over the sub- 
basins of GRB more precisely. 

The final drought risk map for agriculture over the GRB area was 
prepared (Fig. 15), and it represented the level of drought risk at each 
district in each sub-basin. This map was prepared using the overlay 
analysis of classified drought hazard and drought vulnerability map 
(Drought Risk = Drought Hazard × Drought Vulnerability (Exposure ×
Sensitivity)) using the two-dimensional table of overall risk score 
(Table 5). 

The results show that 22 districts, which covered approximately 30% 
of the total GRB area, were classified as safe from drought risk (although 
the area was only 7.5% when calculated considering only the drought 
hazard (SPEI)). This demonstrates the importance of considering the 
vulnerability and exposure components in a risk analysis for a precise 
risk assessment. A lower area of approximately 8% presented low risk, 
whereas an area of approximately 11% (covering six districts) presented 
very high risk, as highlighted in dark red in Fig. 15. Thirteen districts in 
the middle and the north-western parts of the state were classified at 
medium risk (yellow), whereas the remaining ten districts in the north 
and east were classified at low risk (light green) owing mostly to their 
lower PD and higher share of non-agricultural land. 

According to the agriculture drought risk assessment, the areas 
highlighted in dark red in Fig. 15 are the most affected and highly 
vulnerable districts, which are expected to experience maximum 
drought frequency with higher drought severity under the worst-case 
drought scenario. They will likely be more impacted by droughts 
under the influence of climate change. Therefore, the East Godavari 
district (one of the worst-affected districts; densely populated with 
highly coastal vulnerability) was identified and considered for the 
analysis of drought impact. The crop production statistics (production 

and prices) were analysed to investigate the extent of the impacts of such 
a severe drought over the GRB. By selecting one crop, we can quantify 
the spatial and temporal impacts more precisely. Therefore, among crop 
categories, the rice crop was selected because it is the major staple food 
in India, and the major crop at the Godavari River Basin. Moreover, Rice 
is a more water-sensitive crop than many other crops, as it requires more 
water for optimum growth throughout the growing season, hence, 
therefore, represents a higher risk of experiencing economic loss in 
drought. District-level rice production and prices were used as indicators 
to evaluate the risk and impacts of drought on rice crops. The trends for 
annual and seasonal production were plotted, as shown in Fig. 16. 

The rice production decreased drastically during the drought years 
compared to the production in previous normal years, as highlighted by 
the dotted bar in Fig. 16. Rice is a more water-sensitive crop than many 
crops, as it requires more water for optimum growth throughout the 
growing season. Rice crops accounted for 41.02% production loss, 
estimated at approximately 48 million Rs. (67,000 USD), during a single 
drought year in 2009 compared to the production of the previous year in 
2008 (Fig. 16a). The results were cross-validated with the losses and 
impacts reported by other sources. In 2010, the Ministry of Agriculture 
of the Government of India reported that the 2009 drought was one of 
the worst droughts considering the preceding 37 y. The overall agri-
culture growth in 2009 decreased because of this drought (DOAC, 
2010). The sown area under Kharif food grain declined by 11.78%. 
Approximately 30 million-hectare crops and 120.5 million people were 
affected during this severe 2009 drought year (DOAC, 2010). The 
overall agricultural production was reduced by 20–40%, in which rice 
output was reduced by 15 million tonnes compared to the previous 
season, and food grain scarcity triggered an inflation of 17–20% owing 
to this single severe drought in India. 

Droughts do not create instant impacts, and the beginning drought 
events may be mistaken for a short dry spell. The analysis indicated that 
droughts are a long-lasting disaster with long-term impacts. They can 
generate greater impact in the following seasons or months, as evi-
denced by the lower production in the dry (rabbi) season than in the 

Fig. 15. The final district-level agricultural drought risk map over GRB.  
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rainy (kharif) season during the same drought year over the East God-
avari district in the GRB, as shown in Fig. 16b. This risk may be 
addressed by implementing a crop rotational adaptation strategy, which 
includes introducing crops that demand less water and provide greater 
benefits without increasing economic or resource demands. Rainwater 
harvesting and storage would also be effective in preventing the drought 
crisis during the rabbi (dry) season because the drought in the rainy 
season may last throughout subsequent dry (rabbi) seasons owing to soil 
moisture loss. Therefore, proper rainwater storage could help address 
this issue. Moreover, the evaluation of risks to crop production and the 
economy can assist in investigating the amount of losses incurred from 
drought in the worst-affected locations, which can be used to justify 
mitigation strategies for drought risk and associated impacts. 

Conclusions 

The impacts of climate change vary with space and time. Thus, there 
is always a need to perform precise climate change risk assessments, and 
hence the spatio-temporal assessment of climate change impacts on 
drought is crucial. In this study, we focused on the assessment of impacts 
of climate change on drought and its consequences on the agricultural 
crops production across each sub-basin over the Godavari River Basin, 
India. For this purpose, this study has used long-term high spatial 
gridded observed datasets over historical period and d4PDF scenarios 
over future period for comprehensive assessment of climate variability, 
and drought occurrences. The results showed that, the locations that 
experience dry episodes are likely to predict more intense droughts in 

the future over Godavari River Basin. The magnitude and intensity of the 
drought are varying from one sab-basin to another sub-basin in GRB 
mainly due to the rapid variability in rainfall and temperature. The 
decreasing amount of annual rainfall during a recent period 
(2015–2019), with a higher contribution (80–85%) during the monsoon 
period (4 months-June to September) adds extra pressure on water 
resource management. The abrupt changes in the amount of intra- 
annual rainfall have brought maximum numbers of droughts over the 
Godavari River Basin during recent past 40 years. Both, the intensity and 
magnitude of drought have been observed increased during the present 
period (2011–2019) than in the past three decadal periods. The 9 sub- 
basins out of 12 (around 75% of the area) showed higher vulnerability 
for drought risk, whereas only 3 sub-basins (around 25 % area) have 
shown a lower risk and less vulnerability for drought occurrences from 
1981 to 2019 across each sub-basin in GRB. 

Future warming increases the drought frequency and severity, as it 
has shown a significant increasing trend of drought in the future under 
both future (+2K) and (+4K) warming scenarios over the Godavari 
River Basin. The severe-to-extreme droughts category has shown 
continuously increased frequency under both warming scenarios. In 
terms of spatial risk, more drought episodes are likely to be predicted in 
the central belt, particularly over the sub-basins of Wardha, Wainganga, 
and Pranitha, and a partial portion of Indravati and Lower Godavari sub- 
basins. Six districts showed the highest drought risk due to their total 
dependence on agriculture production and located with a dense popu-
lation. A sharp decline in rice production (41.02 %), resulting in an 
economic loss of 67,000 USD was estimated during a single worst-case 

Fig. 16. (a) Annual and (b) seasonal rice production at East Godavari for 1981–2017 and 1997–2014, respectively.  
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severe drought year. The drought has impacted significantly maximum 
on food crops than other crop categories like fodder, cash, and oilseeds 
crops in the East Godavari district. The farmers can switch from high- 
water-intensive crops such as rice to crops that require less water for 
optimum growth and can sustain within the drought spell with a mini-
mum water supply such as maize or cotton. Moreover, the crops like 
maize and cotton are less-duration crops (100 and 165 days, respec-
tively), and require less water for optimum crop growth (Praharaj et al., 
2016; Doorenbos and Pruitt, 1977). Therefore, the crop that needs less 
water, and can sustain within a dry spell with minimum water supply 
can be considered a crop rotational mitigation strategy here. This could 
minimize the risk of drought, and even farmers could able to save their 
economy rather than wasting it by producing rice crops during the 
drought year. 
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