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Abstarct This chapter focuses on using various remote sensing data for monitoring
floods and developing risk maps. It covers a wide range of issues, reviews remote
sensing data types, processing techniques, and discussing the limitations and chal-
lenges of using remote sensing images in flood monitoring, especially in MENA
region. Furthermore, the chapter presents a number of previous attempts of flood
monitoring in the MENA region clarifying the data they depend on and the extent of
reaching reliable results. The main aim of this chapter is to highlight the role of the
available remote sensing data remotely sensed, including optical data, multispectral
data, and Synthetic Aperture Radar (SAR) data in supporting flood-related research
and investigation such as monitoring and mapping flood events and risk where is the
lacking the observational data at the arid regions.
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13.1 Introduction

The United Nations (UNISDR, 2015) pointed out that 43% of natural disasters that
occurred globally from 1995 to 2015 were water-related disasters, affecting more
than half (56%) of all people. The socioeconomic effects correlated with floods are
recorded and documented in the developed and developing countries (Bisht et al.,
2018; Martín-Vide & Llasat, 2018; Ozturk et al., 2018). Moreover, according to the
International Disaster Database (EM-DAT; www.em-dat.be), floods are the most
frequent disaster with the highest impact in terms of the number of people affected.
Flash floods cause the devastating impacts; however, it is more severe in developing
countries such as MENA region. During the past few decades, the frequencies of
extreme events have increased in the Middle Eastern North African (MENA) Region
(Zhang et al., 2005). The Arab region is characterized by increasing the frequency
and intensity of extreme storm events which resulting in devastating flash floods,
along with drought threats (Abdrabo et al., 2020a; Saber et al., 2020; Saber & Habib,
2016). This might be attributed to climate change or human impacts; however, the
reasons are still not well understood. In spite of the multiple evidence and the
growing awareness of the flood risks, the modeling capacity of flood dynamics
remains poor, which is mainly related to the availability of data. Flash flood risk
mitigation requires precise and accurate flood monitoring measures for helping
hazard management (Arora et al., 2020). One of such measures is mapping the
inundation areas, which is considered as one of the main concerns among scientists
and governments around the globe (Ali et al., 2019, 2020). Flood inundation maps
are used mainly for (1) Forecast scenarios; (2) Mitigation and planning – flood risk
analyses (3) Timely response; (4) Damage assessment; and (5) Environmental and
ecological assessments. Flood inundation mapping are generally difficult and con-
sidered more difficult in MENA region due to the difficulty of accessing the affected
areas, that consequently affect the performance of the hydrological modeling which
requires a detailed observational dataset for calibration and validation (Abdrabo
et al., 2020b; Abushandi & Merkel, 2011; Hall et al., 2014; Kilpatrick & Cobb,
1985; Lin, 1999; Pilgrim et al., 1988; Rodier & Roche, 1978:197; Wheater et al.,
2007).

In this context, Remote Sensing (RS) is an extremely useful source of observation
data that could overcome the decline in field surveys and observational stations,
especially in MENA region. RS plays an important role in all the phases of flood
hazard management, from preparedness, emergency management, and civil protec-
tion phases and up to damage assessment for flood risk reduction. RS data provide
huge advantages: low costs, data acquisition reliability, overcoming the local diffi-
culties such as site accessibility etc. Moreover, it can play a key role in the
calibration and validation of hydrological and hydraulic models in addition to
providing real-time flood mapping and monitoring applications (Domeneghetti
et al., 2019; Haq et al., 2012). Although the number of state-of-the-art and innovative
research studies in these areas is increasing, the full potential of RS in enhancing
flood mapping, modeling, and prediction has not been exploited (Saber et al., 2010;
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Sanyal & Lu, 2004; University of Waterloo et al., 1993). However, as is often the
case, new opportunities and applications pose new challenges: the nature of the data,
the different size, and scale of the objects and the processes which can be now
investigated, even the sheer quantity of available data, all require new or more
powerful tools to be suitably dealt with.

RS primarily in the form of satellite and airborne imagery and altimetry such as
(Resurs-P, GeoEye, and WorldView, or from drones). The different uses of RS
products in the case of flood monitoring are as follows: (1) elevation data such as
Shuttle Radar Topography Mission (SRTM) and digital elevation model (DEM) from
WorldView-2 stereo pair imagery; (2) The land use/land cover and soil properties
which can be obtained from fused ASTER multispectral and ALOS-PALSAR Syn-
thetic Aperture Radar (SAR) data; (3) Rainfall products such as the Tropical Rainfall
Measuring Mission (TRMM) (Kummerow et al., 1998) (Chen et al., 2015; Kneis
et al., 2014; Ochoa et al., 2014; Prasetia et al., 2013), the Climate Prediction Centre
morphing method (CMORPH) from NOAA CPC (Joyce et al., 2004), (PERSIANN)
from the University of California (Hsu et al., 1997; Yoshimoto & Amarnath, 2017),
Global Satellite Mapping of Precipitation (GSMaP) from Japan Science and Tech-
nology Agency (JST) and Japan Aerospace Exploration Agency (JAXA), IMERG
LATE, and IMERG EARLY from NASA which are two new rainfall data products.
There are many other remotely sensed meteorological products that are publicly
available and occasionally updated with ground-based information, are commonly
known as global datasets. Utilizing such high-resolution, multi-temporal data give the
chance to enhance the performances of the forecast, alert, and post-event monitoring
of inundation events (Refice et al., 2018b). The integration of remotely sensed data
(such as Data Terrain Models (DTMs), flood extent, river width, land cover, water
level, etc.) with flood modeling significantly enhances the prediction results (Haq
et al., 2012; Refice et al., 2018a). Although the previous studies showed encouraging
results using different types of RS data combined with in-situ data, many challenges
face such applications from an uncertain point of view.

In the present chapter, we will start with an overview of flood monitoring systems
and remote sensing approaches, followed by the potential and limitations of open
satellite data for flood mapping. Finally, we present some applications of remote
sensing on flash floods in MENA region at five Egyptian cities.

13.2 Overview of Remote Sensing Approaches Used
in Flood Monitoring

Flood monitoring activities can be divided into three sets, according to the stage of
operations with respect to the event occurrence. (1) Forecast scenarios; (2) Timely
response and Emergency monitoring; (3) Damage assessment (Hutter, 2006).
According to each activity, the type of RS approaches and data used in each activity
is determined. Forecasts rely mainly on meteorological information, so low- to
medium-resolution optical data are usually implicated. In emergency monitoring,

13 Applications of Remote Sensing for Flood Inundation Mapping at Urban. . . 309



the emphasis is clearly on fast response and relatively high resolution, so a poten-
tially wide variety of sensors can be involved, working in both the optical and
microwave spectral regions. The third type of application is the one that involves the
most advanced processing techniques to defining the spatial and temporal changes of
factors, which, in return, control flood generation and risk. Multi-temporal and
multisensory data allow a temporal and spatial reconstruction of flood inundation,
from the beginning until the end when all the inundated areas return dry.

Remote Sensing data is produced through two main components: the sensors and
the platform on which the sensor is installed. There are three types of platform, surface
platforms such as ladder and tall building, Arial platforms such as aircraft and balloons;
and spaceborne platforms are mainly satellites and space shuttles (Liang et al., 2012).

For the sensors, there are two types of sensors, passive and active. Passive sensors
detect natural radiation that is emitted or reflected by the observed object. Reflected
sunlight is the most common reflect radiation and is sensed by passive sensors.
Typical passive sensors include three parts; radiometer to measure the electromag-
netic radiation in the visible, infrared, or microwave spectral bands, imaging radi-
ometer (scanner) to provide a two-dimensional array of pixels from which an image
may be produced; and spectroradiometer to measure the radiance in multiple spectral
bands (Liang et al., 2012). The Active sensors are emitted electromagnetic radiation
to illuminate the observed object. They use a pulse of energy sent by the sensor and
receive reflectance of this pulse. The types of measurement tools are included in
active sensors are radar which uses a transmitter operating at microwave frequencies
to emit electromagnetic radiation, and a directional antenna to measure the time of
arrival of reflected pulses from observed objects for determining the distance,
synthetic-aperture radar (SAR) which is considered a side-looking radar imaging
system that uses the relative motion between an antenna and the Earth surface
(Fig. 13.1) to synthesize a very long antenna by combining signals received by the

Fig. 13.1 SAR Image production process. https://crisp.nus.edu.sg/~research/tutorial/mw.htm
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radar as it moves along its flight track for obtaining high spatial resolution imagery,
synthetic interferometric aperture radar (InSAR) which compares two or more
amplitude and phase images over the same area received during different passes of
the SAR platform at different times, scatterometer which is a high-frequency micro-
wave radar designed specifically to determine the normalized radar cross-section of
the surface. LIDAR (Light Detection and Ranging) is an active optical sensor that
uses a laser in the ultraviolet, visible, or near-infrared spectrum to transmit a light
pulse and a receiver with sensitive detectors to measure the backscattered or reflected
light, Laser Altimeter which is a laser altimeter that uses lidar to measure the height
of the instrument platform above the surface (Liang et al., 2012).

The specifications of the platform and sensors determine the characteristics of the
produced data, including spatial, spectral, temporal, and radiometric resolutions.
Spatial resolution refers to the number of pixels representing the construction units
of a digital image (Athanasiou et al., 2017). The spatial resolution could identify by
the smallest object has been resolved by the sensor, which is also the area of the
sensor’s field of view (Liang et al., 2012). Figure 13.2 illustrates the difference
between the lower and higher levels of spatial resolution.

Spectral Resolution, which represents the range of the electromagnetic spectrum,
could be observed by the sensor. The spectral resolution is determined by the number
and the narrowness of bands. When the number of bands lies between 3 and 10, this
could describe as multispectral resolution, where the hyperspectral resolution
includes the number of bands that reach the thousands (Jenice Aroma & Raimond,
2015). Figure 13.3 illustrates the different types of spectral resolution.

Temporal resolution refers to the repeat of the imaging cycle, which means the
frequency of processing the same areas with the sensor. Orbit pattern and satellite
sensor’s design determine the frequency characteristics (Liang et al., 2012). Radio-
metric resolution represents the smallest energy differences that have been observed
from the electromagnetic reflectance. It describes the sensor’s ability to detect small
changes in radiance and depends on how the continuous upwelling radiance signal is
converted to discrete, digital image data. For example, The highly sensitive detector

Fig. 13.2 The difference between the lower and higher levels of spatial resolution. https://crisp.
nus.edu.sg/~research/tutorial/image.htm
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with 12-bit radiometric resolution could be more precise in investigating the water
depth of the changing of a channel (Re & Capolongo, n.d.).

13.2.1 Data Types Used in Flood Monitoring

At the MENA region, and due to the lack of data, most flood monitoring research and
applications depends on the free available satellite images available remote sensing
data. The most widely used satellite images were reviewed from the literature are
listed in Table 13.1 (Jenice Aroma & Raimond, 2015).

Depending on the used sensor and techniques, the remote sensing data could be
divided into different types. These types are mainly including optical data, multi-
spectral data, synthetic aperture radar (SAR) data, and vegetation and water indices.
The following section identifies the production process of these types, the uses of
each type, and the main differences between them.

13.2.2 Optical Data

Optical imaging depending on the visible, near-infrared, and shortwave infrared
spectrums to produce the imagery types such as panchromatic, multispectral, and
hyperspectral as shown in Fig. 13.4 (Zhu et al., 2018). Optical data is considered a
crucial data source in the investigation of flood extension and evolution. Clean water

Fig. 13.3 The different types of spectral resolution. https://www.satimagingcorp.com/services/
resources/characterization-of-satellite-remote-sensing-systems/
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Table 13.1 A review for the most used remote sensing data in flood monitoring

Satellite
Name Lunched by Purpose Details

Landsat National Aeronau-
tics and Space
Administration
(NASA)

Land cover, forest and
agricultural applications

The Landsat 7 images are of
30 m spatial resolution for
multispectral and 15 m for
panchromatic mode (PAN)
images

Resourcesat Indian space
research organiza-
tion (ISRO) offers

Available to the public users
with 23.5 m and 56 m resolu-
tion, respectively

Terra Nasa Collecting information
about both the earth sur-
face and atmosphere

- advanced Spaceborne ther-
mal emission and reflection
Radiometer (ASTER)
- clouds and Earth’s radiant
energy system (CERES)
Multi-angle imaging
Spectroradiometer (MISR),
moderate resolution imaging
Spectroradiometer
(MODIS)
- measurements of pollution in
the troposphere (MOPITT).

Aqua Nasa Collecting information
about the earth’s water
cycle, glaciers, and
atmosphere

Calipso Nasa Atmospheric, aerosol
activity, and effective
climate research

The Lidar instrument com-
bined with passive infrared and
visible imagers could capture
the cloud movement and aero-
sol properties [

Earth
Observing-
1

Nasa Hyperspectral imager could
measure up to
200 wavelengths

Quickbird Digital globe Very high-resolution satellite
images of 60 cm in PAN and
2.4 m in multispectral images

Formosat National Space
Organization
(NSPO) of the
republic of China.

High-resolution images of 2 m
in PAN and 8 m in multispec-
tral images

Spot French organization
named spot image

Offer 2.5 m to 5 m in PAN and
10 m in multispectral. Mode

Ikonos GeoEye
organization [20].

Providing high resolution
multispectral and PAN images
of 4 m and 1 m, respectively

Sentinel European Space
Agency (ESA)

Land cover change anal-
ysis and natural disasters
monitoring applications

Provides all-weather data both
day and night on radar imaging

(continued)
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surfaces absorb most of the electromagnetic energy. Therefore, in optical images, the
water area could be recognized easily where it appears as dark areas. However, in
cases such less clean water and increasing reflections from water recognition is
becoming more difficult, and using several spectral bands data can help (Fig. 13.5).
Cloud coverage is the main obstacle that faces the use of optical data in flood
monitoring, which are often associated with flood events (Re & Capolongo, n.d.).

Table 13.1 (continued)

Satellite
Name Lunched by Purpose Details

Kalpana Produces three bands of visi-
ble, thermal infrared, and
water vapor infra-red images
using a very high-resolution
radiometer (VHRR) with a
resolution of 2 � 2 km [22].

Radarsat Canadian Space
Agency (CSA)

Landcover operations on
mines, icebergs, and
underground water
explorations

Offers SAR data which

Fig. 13.4 “Left images, captured on October 31, 2018, show the large river sediment inflows into
the Northern Adriatic Sea in “true” color. The right images display the turbidity levels assessed with
EOMAP’s EO processing system” (https://www.eomap.com/using-satellite-data-for-flood-monitor
ing/)
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13.2.2.1 Multispectral Data

Multispectral remote sensing data is produced by a multispectral sensor. The used
sensors have multichannel detectors; each channel is sensitive to radiation within a
narrow wavelength band. These sensors produce multilayer image which contains
both the brightness and spectral information for the objects. A hyperspectral sensor
collects and processes information from 10 to 100 spectral bands. The resulting
images can be used in recognizing objects, identify materials, and detect elemental
components (Zhu et al., 2018). A multispectral sensor could be useful in flood
monitoring with a presence of cloud coverage and within dense urban areas (Vissers,
2007).

13.2.2.2 Synthetic Aperture Radar (SAR) Data

Synthetic aperture radar (SAR) is useful in mapping the object’s reflectivity with
high spatial resolution through the emission and reception of electromagnetic pulses.
The SAR data have various applications such as detecting objects and their geo-
graphic location, estimation of environments geophysical properties (i.e. certain
dimensions, moisture content, roughness, and density) (Ditchfield, 1966).

Synthetic aperture radar data are a valuable resource for monitoring flood events.
Most of the flood events have been accompanied by the widespread presence of
clouds; the long-wavelength in SAR system could propagate through these clouds,
which provied accurate data images.SAR sensors have achieved unprecedented
resolutions and repetitivity of acquisition so that their application to flood monitor-
ing is receiving mounting interest (Re & Capolongo, n.d.).

Fig. 13.5 Typical Reflectance Spectrum of Vegetation. The labeled arrows indicate the common
wavelength bands used in optical remote sensing of vegetation: (a): blue band, (b): green band; (c):
red band; (d): near IR band; (e): short-wave IR band (https://crisp.nus.edu.sg/~research/tutorial/
optical.htm)

13 Applications of Remote Sensing for Flood Inundation Mapping at Urban. . . 315

https://crisp.nus.edu.sg/~research/tutorial/optical.htm
https://crisp.nus.edu.sg/~research/tutorial/optical.htm


13.2.2.3 Vegetation and Water Indices

The spectral composition of remote sensing spectral data provides information about
the physical properties of soil, water, and vegetation features in terrestrial environ-
ments. Remote sensing techniques, models, and indices are designed to convert this
spectral information into a form that is easy to interpret (Bannari et al., 2017). Indices
are considered a compact form of data that can effectively ensure the presence or
absence of water. The indices are common identified as quantitative comparisons
between the response of each ground pixel in different bands of the electromagnetic
spectrum (Re & Capolongo, n.d.).

Several indices have been developed, such as the Normalized Difference Water
Index (NDWI), proposed by McFeeters in 1996 to detect surface waters in wetland
environments and investigate the surface water extent(Mcfeeters, 2013). Also, the
Normalized Difference Vegetation Index (NDVI) is applied to estimate the level of
crop’s growth and detect the drought rate of vegetation (Mcfeeters, 2013). On the
other hand, water emission in the infrared is generally lower than in the red part of
the spectrum, so water has an inverse NDVI behavior with respect to both vegetated
and unvegetated land. This makes NDVI a suitable tool to detect water surfaces
rapidly (Re & Capolongo, n.d.).

13.3 Potential and Limitations of Open Satellite Data
for Flood Mapping

13.3.1 Cloud Coverage Problem

In spite of the great potential that remote sensing in flood management, some
limitations face its use. For example, the presence of cloud cover during the flood
event has been reported as the major challenge in the use of optical remote sensing in
flood management. According to Sanyal and Lu (2004), using SAR is a better option
because of the higher penetration power of the radar pulse, overcoming the problem.
However, its use, especially in developing countries has been constrained by its high
prices as well as limited coverage (Application of Remote Sensing and Geographical
Information Systems in Flood Management: A Review). Figure 13.6 provide an
example of the cloud coverage effect on the remote sensing data.

Furthermore, spatial resolution has a crucial effect on flood monitoring. The
spatial characteristics of the flood inundation area could constrain the use of satellite
images with lower spatial resolution. When the inundated area is small, it cannot be
observed by low-resolution images. Also, urban areas or dense forests complicate
the process of flood detection. However, the high-resolution data and field surveys
are crucial for reliable mapping (Potential and limitations of open satellite data for
flood mapping).
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13.3.2 The Problem of Temporal Resolution in Flood
Management

Temporal resolution represents a further challenge that faces the use of remote
sensing in flood monitoring. The low temporal resolution causes limited availability
of imageries in time-space, seasonal variations, and different technical limitations.
For example, low temporal resolution may cause to not capture the peak of the flood
event where most radar images are taken sometime before it. In addition, an area
flooded by a small stream has a very short co-flood time interval which necessitates
the higher temporal resolution. There is an essential need for a more consistent
monitoring strategy in terms of frequency and timeliness of remote sensing data
collection. The inadequate frequency of image collection is one of the most impor-
tant limitations. It is found that the closer the time between when the image data were
collected and when the event peak occurred, the more reliable the detection of
maximum flood extents and depths.

Fig. 13.6 The Sentinel-2 cloudless layer combines over 80 trillion pixels collected during differing
weather conditions between May 2016 and April 2017. Image: ESA. (https://medium.com/planet-
stories/cloudless-an-open-source-computer-vision-tool-for-satellite-imagery-6f4daaa4851f)
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13.3.3 The Problem of Detecting Flooding in Urban Areas

Floodwaters can be detected with good precision by exploiting several typical
characteristics of inland water surfaces with respect to dry areas. One is the reduced
reflectance of clean and calm water with respect to land areas. This behavior is
common to virtually all the optical spectral ranges, as long as the acquisition is far
from the specular direction. An additional way to distinguish the presence of surface
water is given by the availability of reflectance information in the infrared thermal
spectral bands. This is also generally low for water surfaces with respect to land
areas. Both these methods rely on assumptions that are broadly fulfilled when
monitoring flood events occurring over non-urban land areas, especially when
using low or medium-resolution data. For instance, artificial surfaces may have
very low reflectance and thus be mistaken for flooded areas. This is more likely to
occur in highly complex environments like urban areas, where pavements and
tarmacs may have a wide range of reflectance behaviors during a flood event. This
may also include flooded surfaces exhibiting artificially high reflectance, which
could be due, for instance, to a shallow water layer over a bright pavement or to
specular reflections from surrounding buildings. Such cases could be successfully
solved by sensors having infrared detection bands. In fact, urban areas are admittedly
among the most complicated land cover types for many remote sensing applications,
in virtually all regions of the electromagnetic spectrum, with flood monitoring
making no exception (Re & Capolongo, n.d.).

13.4 Application of Remote Sensing on Flash Flood
and Extreme Rainfall Events in MENA Region

13.4.1 Area of Interest

The surface area of the Arab region is about 13,781,751 km2. It consists of 22 coun-
tries as shown in the map (Fig. 13.8a). The population has increased by the rate of
2% every year from 2002 to 2020. The average annual rainfall over the Arabian
region varies from 0 to 1800 mm, while the average evaporation rate is more than
2000 mm/year (https://data.worldbank.org/indicator/SP.POP.GROW?view¼map
(2021); Saber et al., 2017b). The Arab region is suited in the northern hemisphere
with semi-arid to arid climatic conditions. The total average rainfall (Fig. 13.7a)
estimated from GSMaP shows spatial variability with a low precipitation rate over
the region (Saber et al., 2017a). The aridity index was estimated for the region from
The Consortium for Spatial Information (CGIAR-CSI) 8) as shown in (Fig. 13.7b). In
most Arabian countries, during the last 7 years, Wadi flash floods (WFF) became
catastrophic and more frequent in both space and time (Fig. 13.8a & b).
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13.4.2 Case Study of Cities of (Al Arish, Ras Gharib, Al
Saloum, Drunka, Hurghada)

According to the UNDP, by 2050, two-thirds of the world’s population is likely to
live in cities. Urban flooding is already a major risk for cities. Increasing impervious
surface area, inadequate stormwater drainage, and aging infrastructure all contribute.
As a result, growing urban populations will face a greater risk of flooding from
extreme weather events. Using satellite data allows individuals and organizations to
develop better plans for handling floods. This can include developing better early

Fig. 13.7 Average rainfall estimated from Global Satellite Mapping of Precipitation (GSMaP) data
(a) and Aridity Index (b) estimated from Global Aridity Index developed by the Consortium for
Spatial Information (CGIAR-CSI) 2002–2012

Fig. 13.8 Wadi flash floods frequency and classification spatially (a) and temporally (b) at the
Arab region
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warning techniques, better plans for rescue and relief, and more effective long-term
infrastructure planning.

In Egypt, about half of the yearly precipitation falls from December to March.
Precipitation is generally very low throughout the country, although it averages more
than 200 mm/year along the Mediterranean coastline. Most of Egypt is a desert and
is classified as arid, except for the Mediterranean coast, semi-arid. There are four
climate regions in Egypt: Nile Valley (from Cairo to Assiut, from Assiut to Edfu and
from Edfu to Nasser Lake), Eastern Desert (Red Sea Region), Sinai Peninsula (South
Sinai and North Sinai), and Matrouh Governorate (Salloum Plateau). Our goal is to
generalize the results for the whole country. Therefore, representative samples with
different climatic regions in Egypt and the selection of case studies were conducted
based on two factors: the history of hazardous flash floods and climatic conditions.
Accordingly, the selected cities are the city of “Ras Gharib” representing the Red Sea
and Eastern Desert region, the city of “Al-Arish” representing the region of the Sinai
Peninsula, “Drunka village” in Assiut governorate representing the Nile Valley and
Delta region, and the city of “Salloum” that is representative of the Mediterranean
region (Saber et al., 2020).

Ras Gharib is the second-largest city in Red Sea Governorate and the most
important Egyptian city in oil production. It is located 150 km to the north of
Hurghada on the Red Sea coast (Fig. 13.4d). Ras Gharib is considered to have a
desert climate. During the year, there is virtually no rainfall, with an average of about
5 mm. The average annual temperature is about 22.2  C (Saber et al., 2020).

The Sinai Peninsula is located in the northeast of Egypt between latitudes 27 430

to 29 550 and longitude 32 390 to 34 520. Al-Arish (Fig. 13.4b) is located on the
coast of the Mediterranean Sea. It has a tropical climate with a rainfall average of
about 3262 mm, even during the driest months. The average annual temperature is
23.8  C (Saber et al., 2020).

Salloum is a small Egyptian border city near the western border of Egypt with
Libya. It is located on the Mediterranean coast (Fig. 13.4d). The climate in Salloum
is considered a desert climate. The average annual temperature is 19.6  C, and the
average annual rainfall is 150 mm (Saber et al., 2020).

Drunka is one of the villages of Asyut Center in Asyut Governorate in Egypt
(Fig. 13.4c). The climate in Asyut is called a desert climate, with a precipitation
average of about 2 mm, and the average annual temperature is 22.6  C (Saber et al.,
2020).

Hurghada is an essential center for tourist and mining activities: it lies directly on
the Red Sea coast, and it is bounded by latitudes 270 100 and 270 30’ N and
longitudes 330 300 and 330 520 E. Hurghada almost every year, causing loss of life
and significant damage. Accordingly, the city has become one of the most vulnerable
areas to such events near the Red Sea. Satellite rainfall data show that this trend
increased in Hurghada from 1983 to 2019. Additionally, the city has the highest
mean annual maximum daily precipitation in Egypt. Since 2000, numerous urban
flash flood events have occurred along the Egyptian Red Sea coast, which has
experienced 30 medium and large events this century (Gado, 2017). There has
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been an increase in the exposure of the city to flood risk during winter (rainy season)
from October to February due to convective rainfall (Table 13.1).

Additionally, since 1996, several urban flash flood events have been recorded in
the city and its vicinity. Inhabited areas, main roads, military campuses, and tourist
buildings have been severely affected. Moreover, environmental contamination due
to water flooding, especially in the inhabited lowland areas, has occurred (Abdrabo
et al., 2020a) (Fig. 13.9).

13.4.3 Remote Sensing Data

Many types of data sets were collected and analyzed in this study (Table 13.2 and
Fig. 13.10). The lack of hydrological and meteorological data in the Egyptian cities
necessitated the use of hydrological modeling to predict flood depth and the spatial
extent and identify sites with high risk. The RRI model used several remote-sensing
data, including a digital elevation model (DEM) with an accuracy of 12.5 m, an LC
map, and historical daily rainfall records. The resolution of the rainfall data was as
follows: (0.04 � 0.04 )-hourly based data for the 2014 (5-year REP) and 2016
(10-year REP) events. The resolution of the rainfall data was (0.25 � 0.25 )-daily
based data on the 1996 (50-year REP) event. LC was mapped from Sentinel
(2A) with a 30 m resolution. These data sets were used to produce the inundation
maps for the 5, 10, and 50 REPs in Hurghada.

Regarding model calibration and validation, photos during the event from differ-
ent local newspapers were used. One of the authors (S.A.K.) conducted fact-finding
and field investigations, reconnaissance-level inventories for topographic maps, and
site visits to obtain the ground truth of the interpretations from imagery. From 2014
to 2015, we visited several specific urban sites, reviewed the proposed layouts of
buildings and infrastructure, and provided comments to developers regarding
avoiding urban flash flood risk and other environmental impacts. We have direct
knowledge of the urban flash flood history of Hurghada over the past three decades,
from the early 1980s to 2019.

13.4.4 Methodology

The workflow of the hazard module for floods using the RRI model is summarized in
three steps. First, the daily spatial rainfall intensities for different hazard scenarios
were obtained based on PERSIANN-Climate Data Record (CDR) for the 1996 event
and the PERSIANN-Cloud Classification System (CCS) for the 2014 and 2016
events with their highest resolutions, i.e., 25 km and 4 km, respectively. Second,
the DEM was obtained from Advanced Land Observation System-Phased Array
Synthetic Aperture Radar (ALOS-PALSAR) data available from the Alaska Satellite
Facility (ASF) Distributed Active Archive Center (DAAC) with a 12.5 m resolution
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Fig. 13.9 Location maps showing the target cities and related wadi catchments and stream network
developed from DEM (Sentinel-2) by GIS: (a) Salloum, (b) Wadi Al-Arish, (c) Drunka, (d) Ras
Gharib, (e) the Hurghada catchment area, and (f) Hurghada city
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(ASF, 2006). The original DEM was processed using the Arc-hydro tool of ArcMap
10.6.1 to obtain the filled DEM, and the flow direction and flow accumulation were
extracted. The Arc-hydro tool was used later to identify and extract the drainage

Fig. 13.10 Flowchart for data processing and methods

Table 13.2 Material descriptions

Data type Date Format
Data
source Derived data

ASTER-ALSO-PALSAR
(12.5 m spatial resolution)

2020 Geotiff [84] Topographic and hydrolog-
ical parameters

Rainfall (scale 0.04 � 0.04 )
(hourly based)

2020 PERSIANN-
CCS

[85] Rainfall distribution during
the 2014 and 2016 events

Rainfall (scale 0.25 � 0.25 )
(daily based)

PERSIANN-
CDR

[86] Rainfall distribution during
the 1994 event

Sentinel (2A) (30 m resolution) 2019 Geotiff [87] Land cover types
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features in the study areas, such as the flow direction, flow accumulation, stream
networks, and watershed delineation required as inputs for the RRI model. Third, the
LC map was created based on the Sentinel-2A satellite data from 2019, which were
corrected based on Google Earth satellite images (General Organization for Physical
Planning (GOPP), 2013, 2018). The initial parameters of the RRI model were
assigned based on the validated parameters in arid regions (Abdel-Fattah et al.,
2016). Finally, the RRI input raster maps for rainfall, topography, and LC were
converted into ASCII files with their original resolutions, while the hazard maps
(inundation depths) had the same resolution as the DEM utilized (12.5 m � 12.5 m).

• Model calibration and validation

For more comprehensive and accurate results, the RRI model was calibrated and
validated. Due to the lack of observed data, the calibration and validation processes
were performed based on reported images of the simulated events in each city.
Regarding the land use parameters in the RRI model, the city was classified into
three types of land use: desert, vegetation, and urban, in order to determine the model
parameters for different cases.

13.4.5 Results and Discussions

In the case mentioned above studies, remote sensing data were used as input to
distributed hydrological models to predict streamflow at the microscale scale catch-
ments better. The results as shown in Figs. 13.6 and 13.7, which is already described
in (Abdrabo et al., 2020b; Saber et al., 2020), showed encouraging results using
global datasets combined with in-situ data. Moreover, it showed that model results
using the remote sensing products combined with in-situ data were generally
accurate (Figs. 13.11, 13.12 and 13.13).

13.5 Conclusion

In this chapter, a summary of the most important aspects of detailed flood monitoring
through remote sensing has been attempted. We reviewed the basics of flood
monitoring practices, focusing on the commonly accepted standards for definition,
detection, and updating of flood maps. We then listed the primary sources of data
that are commonly used in flood monitoring activities, spanning through optical and
microwave instruments, the main sources of remotely sensed data used in this field.

The importance of using satellite-based products was discussed for application in
arid regions where the data are not available. We focused mainly on the general idea
of the main data processing techniques used to extract flood inundation maps and
evolution information from earth observation data and to integrate remotely sensed
data into hydrological inundation models, as well as to use remote sensing-derived
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Fig. 13.11 Inundation maps showing the hazard levels affecting the urban areas (a) and estimates
of the vulnerable areas for flood hazard categories from1984-2019 in (a) Al-Arish, (b) Ras Gharib,
(c) Salloum, and (d) Drunka



Fig. 13.11 (continued)

Fig. 13.12 Flood inundation maps (RRI model) for Hurghada in 1996, 2014 and 2016 (a–c)



information to enrich our knowledge of flood processes and aid decision-making
systems.
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