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Abstract The Najd aquifers in Oman, are located in one of the most arid zones in
the world. In such regions, there is a shortage in the water resources where
groundwater is a very critical component for human life. The main aim of this
contribution is to use the satellite remote sensing data of the Gravity Recovery and
Climate Experiment (GRACE) along with the Global Land Data Assimilation
System (GLDAS), to estimate the groundwater storage changes at the Najd aqui-
fers. Groundwater storage changes were calculated from both GRACE/GLDAS
data and from the groundwater level measurements. It was found that the estimated
groundwater storage changes from GRACE and water levels coincide in their trends
showing a noticeable depletion within the time period from Oct. 2002 to Sept.
2014. The spatial distribution maps of the groundwater storage changes show
slightly changes from Oct. 2003 to Sept. 2010, but a significant decreasing were
observed from 2010 to 2014. The groundwater storage over Najd aquifers was
decreased by about 0.44 and 0.46 km3/year as calculated from GRACE data and
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groundwater levels, respectively. We also found that groundwater storage was
affected by the strong storm events as observed in 2007 and 2010. This contribution
could be helpful for the long term sustainable groundwater management in the
study area and other arid regions.

Keywords Groundwater storage changes � GRACE � GLDAS � Najd aquifers �
Oman

1 Introduction

The Najd aquifers are very crucial groundwater resources for Oman, therefore, an
understanding of the groundwater variability is needed in order to determine the
sustainability of such groundwater in this arid region. The Najd area has been cate-
gorized as one of the most aridity regions over the world, and contains about five
towns and thirty villages with a population of about 21,000 residents (PAWR 1986).
Generally, most of the arid regions are suffering from the scarcity ofwater resources. It
is anticipated that the water resources in the Middle East and North Africa will be
declined within the next century due to a decrease of rainfall in the range between 10
and 25%, and an increase of evaporation between 5 and 20%, which is being asso-
ciated with a surge in the water consumption demand (Bates et al. 2008).

Several research studies on groundwater resources in Oman have been carried
out; e.g. Clark and Fontes (1990) has applied isotopic and geochemical methods to
estimate groundwater mean circulation times. Müller (2012) focused on developing
a groundwater model that offers the possibility of studying potential recharge
scenarios, and Herb 2011 determined the groundwater ages through radiocarbon
and tritium dating assessment of the chronology of the paleotemperature record for
the Dhofar groundwater, relying on noble gas measurements. Al-Mashaikhi (2011),
and Al-Mashaikhi et al. (2012), focused on the groundwater chemistry and
groundwater ages as well as appraisal of groundwater recharge by using hydraulics,
hydrochemical and isotope evidences. As stated by Macumber et al. (1998) that
extreme rainfall events can recharge the shallow aquifer system based on the study
of a cyclonic storm in autumn 1992 in the Al-Wusta region in central Oman, they
also concluded that the evapotranspiration losses are small, the infiltration rate is
rapid, and that cyclones can produce fresh groundwater resources under the right
physical conditions. However, the previous studies discussed different issues
regarding groundwater, there is a noticeable gap and critical need for evaluating of
the groundwater variability and changes. This could be helpful in the sustainable
management of water resources in the target region using remote sensing obser-
vations. Water resources management in the study area is still a great challenge in
term of population increase, economic development and urbanization expansion,
therefore it is extremely important to conduct this study to evaluate and estimate of
the groundwater storage changes spatially and temporally and characterize its
variability.
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GRACE satellite mission (Tapley et al. 2004) has been an substantial step for-
ward in monitoring Terrestrial Water Storage (TWS) globally. Since April 2002, it
has been offering monthly gravity field solutions, and has examined as an effective
tool to infer groundwater storage changes by subtracting contributions from other
components (Tiwari et al. 2009; Rodell et al. 2009; Famiglietti et al. 2011; Chen
et al. 2014; Richey et al. 2015), the mass of ice sheets (Velicogna and Wahr 2006),
snow mass (Niu et al. 2007), surface water storage (Kim et al. 2009), and also to
hydrologic drought characterization (Houborg et al. 2012; Thomas et al. 2014).

The spatial variability of TWS is dependent and dominated by variations in ice and
snow in polar and alpine regions, surface water in wet and tropical regions, and soil
moisture in mid-latitudes (Rodell and Famiglietti 2001). Global estimates of the TWS
can be determined by using the temporal variations in Earth’s gravity field (Wahr et al.
2004). The accuracy of the recoveredmass variations increases with increasing size of
the monitored basin, thus, most of the studies utilizing GRACE TWS data are tar-
geting large watersheds for hydrological research and applications (Wahr et al. 2004).
Application of GRACE-based TWS at different spatial scales ranging from continents
(Syed et al. 2008), to experimental watersheds (Tamaisiea et al. 2005) have been
carried out with numerous hydrological purposes. Additionally, GRACE-based TWS
has been examined to estimate hydrologicfluxes inwater balance computations (Syed
et al. 2010) and it has been also analyzed as an essential hydrologic state (Crowley
et al. 2006; Syed et al. 2008). Several quantitative analyses showed consistency in the
modelled and GRACE-based TWS estimates over large regions. The spatial resolu-
tion of GRACE-TWS grids is 1° in both latitude and longitude (around 111 km at the
equator) (Landerer and Swenson 2012). The consistency of GRACE data in smaller
areas was not satisfactory due to the spatial resolution restrictions (Seo et al. 2009).

The main purpose of this contribution is mainly to validate and examine the
potential utility of the GRACE data to assess groundwater storage changes in arid
environment aquifer. In order to achieve the main objective, we first derived the
groundwater storage changes from GRACE-TWS anomalies and GLDAS data.
Afterwards, the results are compared with the groundwater storage changes esti-
mated from groundwater well levels during the time period from Oct. 2002–Sept.
2014. The impacts of extreme events on the groundwater storage changes were also
discussed. Finally, validation of GRACE data to monitor the groundwater storage
changes applied in arid regions of Oman. This could be helpful for the sustainable
groundwater management in such highly demand water resources regions.

2 Study Area

The Najd Aquifers are situated in the Dhofar Governorate, Oman, and covers an
area of about 88,000 km2. The area is internationally bounded by the Kingdom of
Saudi Arabia from the north, the Republic of Yemen from the west (Fig. 1). It is flat
area penetrated by major wadis (valleys), small hills and sand dunes on the north
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edge of the Ruba Al Khali desert (Empty Quarter desert). Vegetation is scattered
and mainly consists of desert shrubs. More extensive vegetation can be found close
to the Jabal chain in south (Al-Mashaikhi 2011).

Climatologically, the annual average of air temperature varies between 6.1 and
44.6 °C, with a mean of 26.2 °C. The orographic rainfall distribution controlled by
the monsoon is the most responsible source of precipitation for the Dhofar area
(Hildebrandt and Eltahir 2008). Rainfall amounts are generally low and variables,
with annual average of about 31.2 mm, however, there some extreme events
occurred in 1983, 1989, 1992, and 2007. The arid climate in the region also leads to
high evaporation rates with annual averages of about 161.4 mm (Al-Mashaikhi
et al. 2012).

Fig. 1 Location map showing the study area of Najd aquifers in Oman, monitering groundwater
wells (distribuated over GRACE/GLDAS pixels denoted from 1 to 7)

158 M. Saber et al.

mohamedmd.saber.3u@kyoto-u.ac.jp



3 Geology and Hydrogeology of the Study Area

The study region consists of alluvium deposits and geological formations of the
Fars Group and the Hadhramaut Group (Roger et al. 1992). The area is influenced
by several faults, which take the general direction southwest to northeast. The
layers thicknesses are increased to north or northeast direction, however, these
layers are thinning to the west of the study area nearby the boundary of Yemen, and
increase towards north and northeast (Al-Mashaikhi 2011).

The Najd groundwater basin is separated into four aquifers categorized from the
top to the bottom as A, B, C, and D as originally presented by Hydrotechnica (1985),
and afterwards these categories were used by Mott MacDonald International (1991,
1994), PAWR (1986), andMWR (2000). Then, Al-Mashaikhi et al. (2012) stated that
A aquifer consist of Rus, Dammam formation and other layers, but The aquifers of B,
C andD are confined and comprised ofUmm-Er-Radhuma (UER) formation. Some of
the previous researches revealed that groundwater at Dhofar area was recharged
during the humid times in the last 25,000 years (e.g. Al-Mashaikhi 2011; Clark and
Fontes 1990). Al-Mashaikhi (2011) found that the monitored data reveals that water
levels are declining in all aquifers, and the groundwater flow direction were deter-
mined based on the water levels contour maps showing the flow from south and
southwest towards north and northeast.

4 Data Processing and Methodology

4.1 GRACE Products

GRACE is a collaborated satellite gravimetry mission between US and Germany
that measures variations in the Earth’s gravity field (Tapley et al. 2004). During the
past decade, it has been the most frequently exploited satellite for TWS estimates.
GRACE data have been utilized to assess water storage changes at global and
regional scales as documented for several regions (e.g., Rodell et al. 2007a, b;
Awange et al. 2008; Forootan et al. 2012, 2014).

In this paper, the scaled version of GRACE data processed and archived by
Landerer and Swenson (2012) were used (http://grace.jpl.nasa.gov/data/get-data/
monthly-mass-grids-land/). This enabled the calculation of GRACE TWS at
(1° � 1°) spatial resolution. TWS data are also available in monthly temporal
resolution (ver. RL05 (CSR): http://grace.jpl.nasa.gov/data/get-data/monthly-mass-
grids-land/), as well as the corresponding scaling factors. Additionally, the scaling
factors were provided for GRACE data errors correction, for instance, the leakage
errors due to signal leakage from neighboring grids, and measurement errors due to
raw GRACE data processing. In order to correct TWS estimates at the target region,
the GRACE pixels were multiplied by the corresponding scaling factors. Currently,
the released RL05 GRACE products enhance the spatial resolution and alleviate the
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data errors. This assisted to analyze groundwater storage changes at regional district
(Tiwari et al. 2011; Huang et al. 2015) and for watershed scale (Billah et al. 2015)
with spatial areas in the range from 30 to 7000 km2. In the present research,
GRACE TWS data are used with consecutive years starting from Oct. 2002–Sept.
2014.

4.2 Global Land Data Assimilation System (GLDAS)

GLDAS data was introduced and sponsored by NASA Goddard Space Flight
Centre (GSFC) and the National Oceanic and Atmospheric Administration (NOAA)
to calculate the variations in both ocean and land mass fluxes (Rodell et al. 2002,
2004, 2007a, b, 2009). GLDAS NOAH Ver.1 (http://gdata2.sci.gsfc.nasa.gov/daac-
bin/G3/gui.cgi?instance_id=GLDAS10_M) were downloaded and processed to
estimate the TWS components (e.g. Soil moisture and surface runoff).
GLDAS NOAH are available at spatiotemporal scales (1° pixels and monthly
resolutions). The total Soil Moisture (SM) was estimated as the total summation of
soil moisture values of 4 layers: (0–10, 10–40, 40–100, and 100–200 cm). The total
soil moisture (SM) was then subtracted from GRACE TWS to calculate ground-
water storage changes (Eq. 1).

4.3 Groundwater Storage Anomalies Estimation
from GRACE/GLDAS Data

We utilized GRACE TWS estimates to evaluate the groundwater storage changes.
The water components of GLDAS such as surface water and soil moisture storage
were subtracted from the GRACE data. Since Oman can be considered as an arid
country, the contribution of snow component has not been considered in the cal-
culations. Therefore, the total water storage change on land (DSTWS) can be rep-
resented by the following equation (Eq. 1). This equation can be re-arranged to be
quantified to estimate the groundwater storage changes (Eq. 2). The 1° � 1° spatial
and monthly temporal resolutions of GRACE TWS data and GLDAS data were
averaged to calculate annual values within the time period Oct. 2002–Sept. 2014.
Then, Soil Moisture and surface runoff anomalies were estimated by subtracting the
average over the time period (Oct. 2002–Sept. 2014) from the soil moisture values
for every month. The annual groundwater storage anomalies were then obtained by
using Eqs. (1) and (2).

DSTWS ¼ DSSW þDSSM þDSGW ð1Þ
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DSGW ¼ DSLAND � ðDSSW þDSSMÞ ð2Þ

where DSTWS is annual TWS anomlies, SW is surface water, SM is soil moisture
and GW is groundwater storage. The GRACE TWS grids were multiplied by the
dimensionless scaling factors grids.

4.4 Groundwater Storage Anomalies Estimates
from Groundwater Levels

Monthly groundwater levels data were collected from the Ministry of Regional
Municipality and Water Resources (MRMWR), Oman. The provided data were
monthly data (four measurements every year) from 2002–2013, but there are some
missing years (Oct. 2006–Sept. 2009) and (Oct. 2006–Sept. 2009). The monthly
data then were averaged for annual level estimates (Oct. 2002–Sept. 2014). About
25 groundwater wells were selected for the availability of the data (Fig. 1). We
compared the calculated GRACE groundwater storage changes from
GRACE/GLDAS data and from in situ groundwater level observations in the study
area to examine the potentiality of using GRACE TWS data for deriving estimates
of groundwater storage changes were evaluated by. The Groundwater storage
anomalies were calculated from GRACE/GLDAS data as addressed in the previous
parts, and also from groundwater wells. The available wells in the study area were
25 wells distributed over only 7 GRACE/GLDAS pixels (Fig. 1), where only (3, 1,
10, 7, 2, 1, 1) wells over Pixels (1, 2, 3, 4, 5, 6, 7) respectively. The anomalies of
groundwater storage were calculated by multiplying the groundwater levels
anomalies by the specific yield average range of 0.3–0.5% for the Najd aquifers.
The specific yield values were highly variable in the previous researches, they used
specific yield to be 0.7–5.9% (GRC 2008), and 0.5% around Helat Ar Rakah
(JICA 1989). According to SAWAS model, it was estimated as 1%, but in other
cases, it was estimated as 2 and 10% for the volcanic and alluvium aquifers
respectively (SAWAS 1996). Additionally as stated in GRC (2014), the specific
yield should not exceed 1% in the aquifer.

5 Impacts of Precipitation on GRACE TWS Anomalies

Based on some availability precipitation data at the weather station of Thumrait that
located at about 80 km north of the Salalah Airport, Oman, we used precipitation
data within the time period from 2002 to 2009 (collected from Al-Mashaikhi 2011)
to evaluate the relationship between GRACE TWS anomalies and groundwater
storage anomalies with precipitation anomalies (Fig. 2a, b). It was noticed that there
are impacts of extreme rainfall events on GRACE TWS and groundwater storage
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changes as recorded in the storm events in 2007 where the TWS and groundwater
were increased due to the impact of the 2007 rainfall at this station (Fig. 2).

6 Comparison of GRACE-TWS Estimates Versus
In Situ Changes in Groundwater

In this study, we conducted the comparison between groundwater storage anoma-
lies derived from GRACE/GLDAS and groundwater derived from in situ obser-
vations of groundwater levels at Najd aquifers. The study area of Najd aquifers are
captured by about 15 of GRACE/GLDAS pixels (partial pixels). The available
groundwater wells are distributed randomly over only 7 pixels (their locations are
labeled from 1 to 7 in Fig. 1). For that reason, we compare the total average of
groundwater anomalies derived from in-situ water levels with groundwater
anomalies derived from GRACE/GLDAS by two scenarios. The first scenario is to
compare the entire basin and the second one is to compare pixel by pixel. In the first
case, the comparison shows an acceptable agreement (Fig. 3) between groundwater
anomalies derived from both GRACE and water levels with coefficient of deter-
mination (R2 = 85). On the other hand, the pixel to pixel comparison (Fig. 6),
shows the following coefficient of determination (R2 = 0.81, R2 = 0.66, R2 = 0.7,
R2 = 0.65, R2 = 0.67, R2 = 0.73, R2 = 0.47) at pixels (1–7) respectively. It was
noticed that the pixels covered by more groundwater wells exhibit good correlations
such as in pixel numbers 1(3 wells), 3 (13 wells) and 4 (7 wells) (Fig. 3b, c, d),
show some acceptable agreement such as in pixel 5 (Fig. 4b), but the pixels which
covered by only one groundwater well exhibits non acceptable correlation such as
in pixels number 2, 6, and 7 (Fig. 4a, c, d). Consequently, it is recommended to
study the validation of groundwater changes estimated from GRACE and water
levels to use enough coverage of groundwater wells. This will be useful for better
evaluation and validation of the groundwater storage changes.

The comparison of groundwater storage anomalies estimated from
GRACE TWS and in situ observations of groundwater wells shows that the
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Fig. 2 Shows the relationship between rainfall anomalies and GRACE TWS anomalies (a) and
groundwater storage anomalies within the time period from 2003 to 2009
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cumulative groundwater storage volume over Najd aquifers has decreased by about
0.44 and 0.46 km3/year respectively, during the time period of Oct. 2002–Sept.
2014 (Fig. 3a). These calculations were performed based on the linear regression
for both groundwater storage changes curves derived from GRACE and water
levels. The groundwater storage changes in the entire region shows slightly vari-
ation with very gentle declining rate from Oct. 2003 to Sept. 2007, then starts
declining until Sept. 2009, but from Sept 2009 to Sept 2010 the groundwater
storage increased. Afterwards, the storage decreased with very steep declining rate
until the end time of the analysis. We found form this analysis that the groundwater
storage changes have two main stages, the first stage is exhibiting slight declination
in the total groundwater storage in the whole region from Oct. 2002 to Sept. 2010.
Within this stage, we noticed the occurrence of two uprising peaks of groundwater
storage at 2007 and 2010 (Fig. 4d), this might be due to the flash floods impacts as
observed during these two years, there are extreme rainfall events, as well as strong
cyclones. On June 6, 2007, Tropical Cyclone Gonu has hit the Gulf coast of Oman.
At that time, the greatest storm had lost significant power and was considered as a
category 1 cyclone. Also, Cyclone Phet with a Category 3 storm had hit Oman and
Gulf of Oman on June 4, 2010 (http://earthobservatory.nasa.gov/IOTD/view.php?
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(c) Pixel 3 (d) Pixel 4
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Fig. 3 Comparison between groundwater changes anomalies estimated from GRACE/GLDAS
(cm) and groundwater changes anomalies estimated from observed groundwater levels (cm) for the
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denoted as 1, 3, and 4)
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id=44189&eocn=image&eoci=related_image). In the second stage, we noticed that
the groundwater storage changes was showing a significant declining rate indicating
a great lose in the groundwater storage in this region, and then start slightly to
increase in 2013. This might be due to groundwater over-drafting for the agriculture
and domestic activities in the region. Additionally, Fig. 5 shows the relationship
between groundwater storage and soil moisture anomalies estimated from GLDAS
data. It was noticed that total water storage was significantly decreased but soil
moisture was increased which might be due to increasing the agriculture activities at
the region especially after 2010 as stated by GRC (2014).

7 Groundwater Distribution Maps Over Najd Aquifers

The spatial distribution maps of the groundwater changes were conducted in order
to understand the spatial variability over Najd aquifers. As we noticed in the
temporal analysis for groundwater storage changes in the time period from Oct.
2002 to Sept 2014, we observed that the distribution maps over the study area
exhibit stability or slightly changes within the time from Oct. 2006 to Oct.

Fig. 6 Spatial distribution maps showing the changes of groundwater storage at Najd aquifers
within the time periods: a Oct. 2006–Sept. 2007, b Oct. 2007–Sept. 2008, c Oct. 2008–Sept. 2009,
and d Oct. 2009–Sept. 2010. The selected two pixels (black rectangular) exhibit that the
groundwater storage is slightly increasing of keeping in steady conditions
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2010 (Fig. 6) as shown in pixels 3 and 4 (black rectangular). Also, we found that
the changes of groundwater storage shows significant decrease (Fig. 7) at the same
pixels (3 and 4) after 2010 until 2014, and this might be due to the extraction of
Groundwater from agricultural wellfield in Hanfeet area as observed by GRC
(2014).

8 Conclusions

Evaluation of the potential utility of GRACE TWS/GLDAS datasets to estimate or
monitor the groundwater changes was conducted. The groundwater storage
anomalies estimated from GRACE/GLDAS data were successfully compared with
and groundwater storage anomalies derived from in situ groundwater levels
showing a reasonable correlation. It was found that the groundwater storage at the
study region of Najd aquifers showing declining in the groundwater storage with
the time period from Oct. 2002 to Sept. 2014. The comparison have done between
the total average of ground levels with the entire groundwater anomalies derived
from GRACE revealing good agreement in the decline trends with a correlation

Fig. 7 Spatial distribution maps showing the changes of groundwater storage at Najd aquifers
within the time periods: a Oct. 2010–Sept. 2011, b Oct. 2011–Sept. 2012, c Oct. 2012–Sept. 2013,
and d Oct. Oct. 2013–Sept. 2014. The selected two pixels (black rectangular) exhibit that the
groundwater storage is showing dramatic decreasing within after 2010 until 2014
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about (R2 = 85), and the cumulative groundwater storage volume over Najd
aquifers has decreased by about 0.44 km3/year using the GRACE TWS data, and
about 0.46 km3/year from groundwater levels during the same time period. Also,
the correlation between GRACE pixels and the corresponding groundwater well
pixels showing that the correlation is reasonable and acceptable if the groundwater
wells coverage is enough number with good distribution over the pixels (e.g.
coefficient of determination (R2 = 0.7, R2 = 0.65) (Pixels numbers 3 (13 wells) and
4 (7 wells)) respectively. It was also observed that the groundwater storage changes
in the study area has been affected by the flash floods events as noticed in 2007 and
2009. Additionally, the time series analysis and spatial distribution maps of the
groundwater storage changes over the study area show slightly changes from Oct.
2003 to Sept. 2010, but after 2010 until 2014, the groundwater storage changes
exhibit a significant decreasing over the region. This study provide results of the
groundwater storage changes from satellite remote sensing data validated by the
in situ observations of groundwater wells at the Najd aquifers, as well as the spatial
and temporal variability data which could be helpful for the future sustainable
groundwater management.
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